S/M-40 Monohull, Alden Ketch

S/M-40

Monohull, Alden Ketch

50' x 15 Tons, Full Keel & Cutaway Forefoot

18-Ft. Dia. Sea Anchor

Force 9-10 Conditions

 

File S/M-40, obtained from Steven McAbee, Lihue, Hawaii - Vessel name Celtic, hailing port Dutch Harbor (Alaska), monohull, cruising ketch designed by John Alden, LOA 50' x LWL 33' x Beam 12' 6' x Draft 5' 6" x 15 Tons - Full keel & cutaway forefoot - Sea anchor: 18' Diameter Para-Tech on 400' x 3/4" nylon three strand rode and 150' chain, with 5/8" stainless steel swivel - Deployed in a whole gale in deep water about 500 miles south of Dutch Harbor with winds of 45-50 knots and seas of 20-25 ft. - Vessel's bow yawed 10° with reefed mizzen flying - Drift was about 22 n.m. during 5 days at sea anchor.

Celtic is a 45-ft. center cockpit ketch built by Fuji Shipyards in 1975. In June 1996 she left Dutch Harbor, Alaska, headed for Hawaii and the South Pacific. On board were owner Steven McAbee, wife Pamela and son Zach. A few days out they ran into a succession of gales in the Gulf of Alaska. McAbee was well-prepared and deployed an 18-ft. diameter Para-Tech sea anchor. Celtic spent the next five days at sea anchor, her heavy, reefed mizzen keeping her bow nicely snubbed into the seas. The following is a transcript of Steven McAbee's article Crossing Gale Alley, appearing in the November/December 1997 issue of Ocean Navigator Magazine (reproduced by permission):

We had fully expected gales and had made preparations for them. Up on the bow, ready to deploy, was a Para-Tech sea anchor complete with trip line, buoys, 3/4-inch rode, and chain catenary. In the lazarette we had stowed a Seabrake Drogue with its own dedicated rode/catenary and bridle. We had Mustang exposure suits for foul weather on deck, harnesses and snap lines for each of us, immersion suits for abandon ship, flares, handheld VHF and GPS, survival supplies, and a 406 EPIRB. We also had Celtic, a proven storm survivor.

Nevertheless, as the low continued to deepen and it became apparent that we would have to deal with it, an old familiar dread began to live in my guts. How bad would it get? Would the sea anchor and drogue work? Although we had practiced deploying them, it had been in relatively calm conditions. We were 500 miles from the nearest land and out of the shipping lanes on a big and lonely ocean. There would be no help coming. Whatever happened, we would have to deal with it ourselves. At night we listened on the SSB to other vessels, some in distress. A 49-foot ketch 400 miles south of Adak lost her rudder and was pummeled by 25-ft. seas. Kamishak Queen, a vessel we were familiar with, sank in Nuka Bay. A tripped EPIRB had been detected in Bristol Bay. The weather forecast called for 45-knot winds and 25-ft. seas. If the low stayed on track we would be in the worst possible place: south of the center and on the backside, the zone of highest wind and seas.

Throughout the day the winds and seas increased. As the wind shifted around from northwest to west to southwest and then south, our progress slowed until we found ourselves beating into 30-knot winds and eight-foot seas. The time had come to make a major strategy decision: Should we bear off to the west or east and try to make a few miles of southing in the worsening conditions? Or would it be better to deploy the sea anchor and sit out the gale?

After due consideration, we decided to use the sea anchor. The Para-Tech was connected to 400 feet of 3/4-inch nylon rode with a stainless steel swivel. All rode ends had spliced eyes with steel thimbles, and in the middle of the rode we had spliced in 20 feet of 1/2-inch galvanized chain to act as a catenary. After a practice deployment before the trip, we had decided to connect the bitter end of the rode to the chain anchor rode and deploy 150 of that. Additionally, we lashed the anchor chain to the bow roller to prevent it from jumping out as Celtic rode the waves into the trough.

We had packed the sea anchor, trip line, and rode into a large canvas bag and lashed it to the bow rail with the bitter end hanging out a hole cut in the bottom. All we had to do was unlash the bag, shackle the bitter end to the anchor chain (the [steel] anchor had been disconnected and stored below for the open ocean), attach the buoys to the trip line, and let her go. Everything went smoothly, and soon we were securely moored to the Para-Tech. We hoisted a reefed mizzen, secured everything on deck, and went below. As night fell we began to feel the full fury of the storm. The rising wind was blowing a steady 40 knots, gusting to more than 50, while the seas built.

I was really pleased with the performance of the sea anchor and the way Celtic rode. During the five days of gale winds at 40 to 50 knots and seas of 18 to 25 feet, I never felt we were in any immediate danger. As the storm worsened and seas began to break over Celtic, I began to wish I had some way to attach all that chain and rode to the bobstay eye on Celtic's stem so her bow would ride higher, but there was no changing anything once it was set. As each monster wave approached, Celtic would back up, much like a retreating Muhammed Ali against a charging Joe Frazier, and let the impact roll under her. Huge waves would break on us, darkening the cabin as green water rolled over the ports.

We were alone. We thought about all the stories we'd heard about vessels slowly breaking up under similar onslaughts: seams opening, through-hulls loosening, cockpit drains plugging. We had made all the preparations we could; all we could do was remain alert and deal with whatever happened.

We set up a radio schedule with the Kodiak Coast Guard Communication Base, better known as CommSta Kodiak, and every four hours we gave them our position, weather conditions, and vessel status. It was a comfort to speak with someone, and the sound of the radio operator's voice and the obvious concern of everyone at the station about our safety was really comforting.... By the time the storm abated, we'd had our fill of granola bars, crackers, and pop. We'd also had our fill of gales. For the last week it had been hard sleep, except for Zach, who was unflappable and able to sleep while weightless and bouncing off the ceiling. We were exhausted.

Unfortunately, the weatherfax showed another developing low headed in our direction, and we decided to make a run for it. The wind had switched around to the west but had dropped to near calm. I proposed that we fire up the engine and run south for 48 hours. That would get us about 300 miles farther and hopefully get us out of what we had come to refer to as "gale alley." Pamela and Zach both agreed, and in short order we were underway.

Forty-eight hours later, on July 8, 13 days after leaving Unalaska, we shut down the engine for the last time. We estimated that we had about 10 gallons of fuel left, and we had consumed much of our perishable food supplies. Counting four days in English Bay and the five days hove to during the gale, we had spent a total of nine days going nowhere. We still had a long way to sail, so after considering everything, we decided to head for Hawaii, where we could re-supply and recuperate before going on to the Marshall Islands. With the wind out of the west and Hawaii just 1,200 miles due south of us, we suddenly felt eager and optimistic....

Twenty-seven days after casting off from Dutch Harbor, Celtic entered Nawiliwili Bay on the southeast corner of the island of Kauai. 

S/M-34 Tahitian Ketch

ORCAS/M-34

Tahitian Ketch

55' x 40 Tons, Full Keel

24-Ft. Dia. Sea Anchor

Force 12 + Conditions

 

File S/M-34, obtained from Robin and Maggi Ansell, Campbell River, B.C. - Vessel name ORCA, hailing port George Town (Cayman Islands) - Tahitian Ketch, designed by R. Hartley, LOA 55' x LWL 47' x Beam 13' 6" x Draft 7' x 40 Tons - Full keel - Sea anchor: 24-ft. Diameter Para-Tech on 500' x 1" nylon braid rode with 5/8" stainless steel swivel - No trip line - Deployed in cyclone Justin in deep water about 200 miles off the coast of Queensland, with winds of 65-85 knots and seas of 33-40 feet - Vessel's bow yawed 25°- Drift was 80 n.m. during 53 hours at sea anchor.

ORCA was on the Pacific leg of her planned circumnavigation when she was caught in the web of cyclone Justin 200 miles off the Queensland coast. The largest cyclone in 20 years, Justin caused millions of dollars in damage, capsized barges, left two people dead, twenty three missing and many homeless. Scores of RAAF and US fighter aircraft and fifty warships had to be evacuated from Townsville as Justin tore into a massive joint military exercise - Operation Tandem Thrust.

ORCA might have emerged intact had the cyclone moved on, instead of stalling overhead. Finding themselves boxed in against the Great Barrier Reef, ORCA's skipper and first mate decided to put down the sea anchor.

"Without the sea anchor, they would have found us on the reef," said owner Robin Ansell in a telephone conversation with Victor Shane.

Deployment of the large sea anchor and 500' of 1-inch line was difficult and further exacerbated by some sort of toxic, chemical mist emanating from the wet rope itself. All told ORCA remained tethered to the sea anchor for 53 hours, lying about 50° to the wind (no bridle).

One can only imagine what the conditions must have been like. In an interview with the Townsville Bulletin, Robin and Maggi said "It was like the water was boiling... it didn't have a pattern to the swell. It just hit us from all sides."

The yacht was eventually holed by a rogue wave. "We were hit by a wave which put a hole in the galley and a similar rogue wave tore two ventilator boxes off the deck. We tried to stuff them to stop the water coming in but we realized we couldn't keep up with it."

The couple had to put out a Mayday. Senior Queensland Emergency Services helicopter pilot Peter Hope said it was the worst weather he had ever flown in. He said, "The majority of the swells were 10m but the mast of the yacht was 18m and there were times when you couldn't see it over the top of the waves." Here is a transcript of the DDDB file Shane obtained from Robin and Maggi Ansell:

We were already in very rough sea conditions when we deployed the para-anchor, because for as long as was viable, we motored across the seas to give us as much distance from the Great Barrier Reef as possible. We deployed it through our starboard side bow roller, and once the parachute had opened up, gradually let out the line by having it wound round the mooring bits. The scariest part of the whole thing was being temporarily blinded, which appeared to be caused by the acrid-tasting spray emanating from the rope, which was wet from the rain and salt spray, and squeezed out as a fine mist when it was pulled extremely tight as it was being run out round the mooring bits when we were struggling to let out the line with some control.... In any case, it is a potentially lethal situation, when one can only see vague shapes, and it is impossible to read instruments, etc. for 24-36 hours. (I couldn't even read the bright green of the radar screen). The absolute agony of the burning feeling under the eyelids, and the constant running of the eyes trying to rid themselves of the foreign matter was unbelievable, similar to a severe case of "arc eye." Fortunately we just stayed on the para-anchor, and vision started improving after 24 hours. There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe, also the load on the anchor line made the line like a steel rod, and one could never have got any slack to be able to replace a chafe guard. Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller. This took care of the chafe, as it was impossible to go forward again as far as the bow during the rest of the 53 hours at anchor before our rescue. The next day, only by peering through the window by the internal steering station, when the vessel was at the bottom or top of a trough, could we sometimes catch sight of the white line leading away from the boat. Then as vision improved we could watch the drift on the GPS, which seemed to average out at about 1.5 knots.

We had deployed the whole 500 feet of line, which probably was not enough in those conditions, but once deployed, it was too dangerous to consider adding further line (of which we actually had another 800 feet). Also we did not employ chain for catenary, on this our first use of the anchor. We would guess that the wave length was probably about 150 feet. The rescue pilot said that the yacht was coming off the waves at 12 knots, since he had to reverse at 12 knots to maintain distance from the top of the mast as we rolled up the waves. He was probably hovering at about 100 feet from the water, and the top of our mast was 70 feet from the water.

There were occasional maverick waves, which were double-crested. The result of which was that we rolled over the first crest straight into the advancing front of the second crest, instantly halting the vessel's roll. Roll rate was up to something like 60 degrees per second, so not only were tons of green water dumped over the vessel but the impact on the hull and superstructure was phenomenal. This is what lifted sealed and battened-down hatches pouring in gallons of water and later broke the galley portlight, and subsequently ripped off the starboard dorades and smashed the safety line stanchions. We probably had about 6 [rogue waves] during the 53 hours before being rescued, each sounding and feeling as if one had been hit by an express train. Each increased in severity until the last two were responsible for the physical damage to the vessel.

Once we had issued the Mayday, we spoke via Townsville Radio and subsequently Sydney Radio to the rescue operations center at Canberra, and were informed that a rescue operation was being put in hand. Within an hour we heard that there was a US Hercules in the area to locate us, that a Rescue Helicopter had departed Townsville with an ETA at our position in 50 minutes, and that a Flying Doctor Service Beechcraft King Air with life rafts would be on station if the helicopter had to abort. We activated our Class 1, Type 406 Satellite EPIRB when instructed. Later we were told by our rescuers that without the EPIRB there was no way they could have located us in such atrocious conditions. We then followed their instructions to the letter, to enable the rescue to take place.

We were rescued on 9th March. We have subsequently heard that Townsville took a double hit from Cyclone Justin on 22nd March and suffered significant damage. For a couple of days following our rescue, Townsville Radio issued the position of ORCA as a hazard to shipping. Then the bulletins stopped, and she is assumed sunk.

ORCA of George Town. This Tahitian Ketch used a 24-ft. diameter sea anchor to stand off the Great Barrier Reef in cyclone Justin. "There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe.... Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller." (Maggi Ansell photo).
ORCA of George Town. This Tahitian Ketch used a 24-ft. diameter sea anchor to stand off the Great Barrier Reef in cyclone Justin. "There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe.... Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller." (Maggi Ansell photo).

S/M-30 Venus 46 Ketch

S/M-30

Venus 46 Ketch

46' x 19 Tons, Low Aspect Fin/Skeg

24-Ft. Dia. Sea Anchor

Force 9 Conditions

 

File S/M-30, obtained from F. Bradford Smith, Newton PA. - Vessel name Kindred Spirit III, hailing port Baltimore, Venus Ketch, designed by Bob Salthouse, LOA 46' 6" x LWL 36' 6" x Beam 13' 6" x Draft 5' x 19 Tons - Low aspect fin keel & skeg rudder - Sea anchor: 24-ft. Diameter Para-Tech on 500' x 3/4" nylon double-braid rode with 3/4" stainless steel swivel - No trip line - Deployed in a gale in deep water about 600 miles east of Miami, with winds of 40-50 knots and seas of 20-25 feet - Vessel's bow yawed 10° with the mizzen up - Drift was minimal during 18 hours at sea anchor.

Kindred Spirit III was designed by Kiwi naval architect Bob Salthouse for New Zealand waters. She is a 46-ft. double headsail ketch displacing about 38,000 lbs. In late October 1985 she was being sailed from St. Croix USVI to Baltimore MD when she ran into foul weather. On board were the owner and skipper, age fifty four, himself an experienced sailor with moderate offshore experience, his wife, and a male crew member, age fifty six, an experienced coastal sailor. A 24-ft. diameter Para-Tech sea anchor was deployed on 500' of 3/4" nylon rode. This is the largest sea anchor Para-Tech makes for small craft and requires at least two crew members to deploy and retrieve. F. Bradforth Smith provides a compelling - step by step - account of the logistics that are involved in the deployment and retrieval of a large sea anchor on a large yacht:

Kindred Spirit III was newly purchased by her owners, who had spent the previous two months planning the delivery and preparing themselves and the boat for the trip. The preparations included the purchase of a parachute-type sea anchor system consisting of a 24' diameter Para-Tech model; 600' of 3/4" braided nylon rode made up in two 300' shots so that the rode was of manageable weight, each shot having heavy duty thimbles (one with thimbles at both ends, and one with a thimble at only one end); a 3/4" stainless swivel for connecting the rode to the anchor shackle; and a 7/8" galvanized shackle for connecting the two shots of rode to each another. Additionally, the owners installed heavy duty hawse holes in the forward bulwarks approximately three feet aft of the stem. These were specifically intended as the lead for the sea anchor rode, and were deemed necessary because Kindred Spirit III's bow chocks were open top chocks and were located atop a 6-inch bulwark, resulting in an unfair lead to the bow cleats seated on deck. The presence of twin steel anchor roller and a large deck-mounted winch made a chafe-free lead directly over the bow problematic.

Six days out of St. Croix Kindred Spirit encountered a line squall which destroyed the leach of her 135% roller furling Kevlar tape drive genoa, rendering it useless and unrepairable with the materials and equipment on board. Proceeding under staysail, reefed main and mizzen, Kindred Spirit was faced with backing wind, and in late afternoon of 2 November was motorsailing into building wind and seas under staysail and mizzen only. Although the boat was moving comfortably and under full control, at 2000 the skipper decided to heave-to because the wind continued to be unfavorable, the seas were continuing to build, and he was concerned that the crew not become fatigued.

Hove-to with staysail and unreefed mizzen, Kindred Spirit rode out the night in comfort, and the skipper enjoyed a full night's sleep. At 0600 on 3 November the skipper decided to deploy the sea anchor because both wind and seas had continued to build during the night and, while the vessel continued to ride comfortably hove-to, the failure of the genoa caused the skipper to have concerns that the other heretofore undetected gear weakness could result in damage to the staysail, the mizzen, or the running rigging, any one of which could produce a dangerous situation.

Additionally, the barometer was reading 1020 and above, indicating that what was being experienced was not a passing low pressure front or cell, and thus no reasonable estimation could be made of the current situation's expected duration. (It was later determined that what was experienced was probably a strong local enhancement of the NE trades, occasioned by a deep low pressure trough which had fallen off the US southeast coast the previous day, creating tightly-spaced isobars between it and the high pressure ridge around whose backside Kindred Spirit's route was planned).

The sea anchor, rode and related hardware, all stowed in the V-berth forward, were brought to the center cockpit and assembled. Both the movement of the equipment and its assembly were difficult due both to weight (even at 300', the rodes weighed in with thimbles at almost 70 lbs. each) and to the motion of the boat as it rode 20+ foot waves. This process, which required managing 600' of 3/4" line in the center cockpit in a manner which permitted access to both ends of each of the 300' shots without creating any tangles, was slow, tedious work which took almost two hours to complete. In the skipper's opinion, attempting to accomplish this task hurriedly in an emergency situation is a recipe for disaster, and attempting it on an open foredeck in any kind of severe weather is unwise.

Once fully assembled and checked, including double mousing of the shackles, the bitter end of the rode was led forward outside all rigging and lifelines and was inserted through the hawse hole from the outside in and about 150' of rode was pulled through the hawse hole and made neat and fast on the foredeck. This rather awkward process was required because the heavy duty thimbles on the 3/4" line would not fit through the hawse holes, even though the hawse pipes installed were the largest available from boating catalogues. A six foot length of fire hose was slipped over the rode's bitter end using a boat hook as a needle, and was then run down the rode to the hawse hole, where it was made fast to the bow cleat. This was accomplished by cutting a "V" shaped notch in one edge of the flat fire hose, and then running a short piece of 3/8" line with a stopper knot through the hole and tying the fire hose to a cleat [so it could not migrate]. This was the only trip to the foredeck required during the entire deployment operation. A 20" round fender buoy to serve both as a locator and as a trip line float was attached to the short nylon web tether provided with the sea anchor. No other trip line was used.

The sea anchor was then deployed from the relatively protected amidships weather deck adjacent to the center cockpit with the boat still hove-to. During deployment, the rode was snubbed about every 50' both to encourage the anchor to emerge from the storage/deployment bag and to help assure that the rode was running free. The boat did not respond to the sea anchor until almost all the rode was deployed and some substantial load was on the rode, at which point she came smartly round to windward and lay about 20° off the wind. The staysail was then doused and secured before it could drive the bow further off the wind and broadside to the waves.

The unreefed mizzen, of approx. 195 sq. ft., was left up as a riding sail the entire time at sea anchor, the intent being to get the boat to lie 40+ degrees off the wind in an attitude similar to that achieved when hove-to. While this did stabilize her motion somewhat, the sheeting angle needed to bring the bow down the desired amount was, in the skipper's opinion, such that too great risk of sail damage existed, so closer sheeting resulted in a stable wind angle of about 30 degrees.

Laying relatively quietly to the sea anchor, Kindred Spirit received only spray on her deck for the 18 hours she lay-to, except for one boarding wave which was the second of two very steep and large waves so closely spaced that her bow was unable to rise from the back of the first to ride the face of the second. The sea anchor consistently "pulled" her bow through the face and crests of waves. Although the anchor rode was bar tight, no jerkiness was experienced, and the rode seemed, between stretch and catenary action, to exert a constant pressure on the deck cleat to which it was secured.

The sight of the 20" round red float bobbing happily on the crest of the next wave in the train was a sight reassuring beyond description. On the other hand, the 3/4" rode, so massive in the cockpit, looked every bit like a string, from which it seemed Kindred Spirit was hanging for dear life. On several occasions the skipper was grateful that he had gone up a size from the rode size recommended.

Every two hours or so a foot or two of rode saved on deck for the purpose was released to even out any chafe. No chafe or even black marks from the inside surface of the fire hose was ever noted. Because the load on the rode was very high, the paying out of rode was a testy business. To avoid even the possibility of a runaway rode and possible loss of the sea anchor, an amidships cleat was used as a second securing point, and the rode was secured to this cleat with enough slack to permit both the paying out of the desired foot or two and the reattachment of the rode to the primary bow cleat. While this arrangement was never tested to its fullest, there were small mishaps which proved the value of the double attachment. Serious injury to hands and fingers is a real danger here, and must be taken seriously.

The skipper had intended to utilize a "Pardey bridle" to bring the bow 40-50° off the wind, primarily for comfort. The riding snatch block normally used in this setup was not attached to the rode before the rode was under load due to the risk of mishap during deployment. After deployment, it was discovered that the 6 foot chafing gear extended so far down the rode that it was impossible safely to reach beyond it to attach the snatch block. The load on the rode was so great that the skipper decided to not risk mishap by attempting to bring the rode alongside to permit attachment of the snatch block, and the bridle idea was scrapped. While the boat's motion was not extreme, it was uncomfortable and enervating. The relative comfort of lying hove-to was significantly higher than the motion experienced lying to the sea anchor without the benefit of a twin attachment point scheme. During future deployments a shorter chafing gear rig will be used and the snatch block will be deployed as a high priority.

During the morning of 4 November the wind and sea began to abate, and by noon the sea anchor retrieval process began. The initial retrieval of the rode was relatively straightforward, as Kindred Spirit was slowly motored toward the sea anchor guided by the orange float, which proved invaluable for this purpose. Due to the remaining wind and sea, constant attention was required to assure progress in the direction of the anchor, and prearranged hand signals from the foredeck to the helm were an absolute necessity. As the rode came aboard, the problem of a now wet 600 feet of 3/4" line on the foredeck became serious. As a practical matter, there was nothing to be done during the retrieval process except to assure that the rode was securely on board and not underfoot. As the float came to be retrieved a significant unexpected problem presented itself.

Upon securing the float aboard, attention was given to the retrieval of the sea anchor itself. Buoyed (no pun intended) by the successful sea anchor experience, the foredeck crew failed to anticipate the extreme load still on the nylon web [float line] tether due to the weight of the now deflated but wet 24 foot nylon parachute and to the strong motion of the boat as she bobbed in the sloppy leftover seas. The male crew member got his upper arm tangled in the webbing, and caught between the webbing and the upper lifeline. Before he was able to extract himself the loads badly bruised his upper arm. Had the tether been smaller in diameter, or had the crew member caught a wrist or finger, broken bones would have been distinct possibilities. It is strongly recommended that much greater consumer education emphasis be placed on the loads and resultant potential dangers associated with anchor retrieval. In the skipper's opinion, retrieval is at least as dangerous as deployment and is especially tricky due to the random load cycling resulting from the uneven motion of the boat as the anchor rode and tether become shorter at the late retrieval stage. Visions of plucking a deflated sea anchor from the water while hanging over the bow with a boat hook are not only fantasies for all but the very smallest equipment, but are also downright dangerous because they so grossly misrepresent the actual loads and associated dangers of sea anchor retrieval.

Upon final retrieval, the anchor, rode and miscellaneous hardware was stowed on the large afterdeck. While this exposed the rode to sunlight, no practical alternative was found which did not involve dragging 600 feet of salt water soaked rode through the salon to the forward head. Minimum sea anchor equipage should include a tarp or other device with which the retrieved rode and sea anchor can be securely protected from the sun and still remain on deck. Future enhancements to Kindred Spirit's storm preparations will include two life raft canisters permanently attached to the aft cabin roof, customized with adequate drain holes and thus intended to permit both dry and wet storage of the sea anchor, rode, and miscellaneous hardware. An anticipated benefit of this arrangement is the ability to substantially make up the sea anchor assembly before departure, thus significantly reducing the time required to deploy.

In summary, the parachute type sea anchor performed in a flawless manner during deployment in moderate gale wind and sea conditions. The ride while at sea anchor was uncomfortable but is expected to be substantially enhanced by use of a bridle off the side of the vessel, thus permitting the adjustment of the vessel's attitude to wind and seas. The 24' diameter sea anchor and its 3/4" rode are large, heavy pieces of equipment whose assembly, deployment and retrieval require very detailed planning and a realistic understanding of the conditions on a vessel in circumstances which make such deployment desirable. Finally, the notion that a 24' diameter sea anchor is a practical means of stopping for lunch is just not a realistic expectation. Heave-to for lunch, leave the sea anchor for when conditions make lunch an effort.

This skipper is grateful that his first deployment was in conditions which were relatively forgiving, and I encourage anyone purchasing a sea anchor to fully deploy, lie-to and retrieve it in moderate conditions. The education thus obtained cannot be described. And, don't leave home without one.

S/M-15 Whitby 42 Ketch

WHITBYS/M-15

Whitby 42 Ketch

42' x 11.75 Tons, Full Keel & Cutaway Forefoot

12-Ft. Dia. Sea Anchor

Force 8 Conditions

 

File S/M-15, obtained from Bruce Stewart, Ithaca, NY. - Vessel name Osteoflyte, hailing port Ithaca, Whitby ketch designed by Ted Brewer, LOA 42' x LWL 33' x Beam 13' x Draft 5' x 11.75 Tons - Full keel & cutaway forefoot - Sea anchor: 12-ft. diameter Para-Tech on 300' x 3/4" nylon three strand with 5/8" galvanized swivel - Deployed in deep water 150 miles east of Cape Hatteras in a low system with winds of 35 knots and seas of 20 feet - Vessel's bow yawed 45° - Drift was about 2.5 miles during 20 hours at sea anchor.

Ordinarily the ketch rig places the CE (center of wind effort) a great deal more forward than sloop, cutter, or yawl rigs. Unless a mizzen can be flown most ketches will tend to "hunt" at anchor. Transcript:

We were 150 miles off Cape Hatteras in 20' seas and deteriorating weather, when we fouled our prop reducing sail. We needed a break so I decided to deploy the chute (this was the first time other than a fair weather practice). We sent the unit off the stern [flying set] on a new 3/4" three strand nylon rode and it went out so fast I got a rope burn I'll never forget. The bow swung as expected and the rode went out a smooth bow skene chock with a good fairlead.

We hung on the chute for 20 hours. The conditions were NASTY, but we could still get to the bow and fuss with the rode. We had a terrible problem with chafe. We tried "freshening the nip" and all sorts of commercial and fabricated chafe gear - it either split or migrated very quickly. In those conditions I think we would have lost the chute to chafe failure of the rode. The second problem was the bow "hunted" back and forth, giving us a most unpleasant motion, and may well have contributed to the chafe. Both of these problems make me question - would a bridle that held the bow a little off center help? And how do you deal with chafe when conditions are really bad?

A few comments. Despite my para-anchor being clearly undersized by your current brochure it held us like a brick wall and seems quite large enough. In 20 hours we drifted 2.5 miles by Loran. I didn't have a suitable trip line and was afraid of a tangle, so just used a float. When the wind dropped to 20-25 we decided to "pull in" the chute and get going. It took two of us (both 220 lbs. and in good shape) to pull us up to the para-anchor and 90 minutes of cranking the anchor windless and then tailing to the genoa winches.

D/M-3 Monohull, Custom Ketch

D/M-3

Monohull, Custom Ketch

50 x 22 Tons, Full Keel & Centerboard

36" Dia. Galerider

Force 10 Conditions

 

File D/M-3, obtained from Frank Snyder, Vice Commodore, New York Yacht Club - Vessel name Southerly, hailing port New York, monohull, center-cockpit aluminum ketch designed by Sparkman & Stephens, LOA 50' x LWL 45' x Beam 14' x Draft 5.5' x 22 Tons - Full keel & centerboard - Drogue: Galerider on 200' x 1¼" nylon three strand rode, with 1/2" stainless steel swivel - Deployed in low system in deep water in the Gulf Stream, with winds of 50 knots and seas of 10 ft. - Vessel's stern yawed 20° with helmsman steering - Speed was reduced to 3-4 knots.

Galerider drogue produced by Hathaway, Reiser and Raymond
Galerider drogue produced by Hathaway, Reiser and Raymond

Frank V. Snyder, Vice Commodore of the New York Yacht Club, ran across an article in a British magazine summarizing the results of experiments conducted by the National Maritime Institute on life rafts in heavy weather, in the North Sea. The article emphasized the importance of sea anchors - small, synthetic cones - when it came to keeping life rafts from capsizing, but revealed that the same cones were often among the first parts of the raft to fail. The article went on to say that the Institute had then designed and built new sea anchors from a close mesh netting material which, unlike their predecessors, did not fail in a second set of sea trials. One raft even lost its ballast bags but still did not flip: its sea anchor held it down.

When preparing his 55-ft. ketch Southerly for a late fall passage from New York to Antigua in 1984, Commodore Snyder decided to equip her with a flow-through drogue of his own design. He approached Skip Raymond of the sailmaking firm of Hathaway, Reiser & Raymond, Inc., with his ideas. Raymond then went to work, building a small model at first, and then the full scale prototype of the first Galerider drogue. It was three feet in diameter and four feet long, shaped a little like a basket made from two-inch nylon webbing. On Saturday, November 17, Southerly departed New York Harbor and broad-reached all Saturday and Sunday morning, making better than eight knots in seas that were building. On Sunday afternoon the barometer began dropping rapidly and, by the time she entered the Gulf Stream at dusk, the wind had piped up to southwest, Force 9-10. Soon she was in very confused conditions, with two big seas crossing at an angle of 90°.

In a related article appearing in the September 1986 issue of Yachting Magazine entitled Galerider Handles a Gale, Frank Snyder wrote that despite being a big, strong, stiff and seakindly boat, Southerly couldn't handle the turmoil. He directed the crew to douse the trysail and they began running before it under bare poles, trying to keep the new seas slightly on the starboard quarter. But as the confused seas continued to build Southerly became unmanageable, now and then her speed racing up to 12 knots or more on the face of a bigger wave. To have her surging at these speeds under bare poles was alarming. The vicious cross seas would catch her on the downslide and roll her rail down under. Her hull form would then cause her to broach in the trough - dangerous if the waves got any bigger. It was time to deploy the Galerider. The rode, 200 feet of 1¼" nylon three strand, was attached to the drogue and the bitter end given four turns around the coffee grinder on the after deck (Southerly is a center-cockpit boat). In went the drogue. When it took hold there was no shock at all; in fact the crew couldn't tell for sure the precise moment when the drogue did take hold, but were soon aware that the boat was slowing down. Commodore Snyder writes that the effect of slowing the boat in that big, confused seaway was magical:

At one moment the boat had been charging like a mad bull, with the helmsman struggling at the wheel; in the next, she was docile and under full control. The helmsman found that Southerly would still answer her helm - though slowly - and that she could steer through about 90°. Everyone relaxed, and the off-watch turned in, even though the motion wasn't all that comfortable, with the cross sea still rolling us 20° either side of vertical. But the boat was safe.

The seas continued to build for the next three hours and several big ones came aboard over the stern, though no green water reached the cockpit. Had the cockpit been aft, it would probably have filled a couple of times. At 0200, the wind veered to north and began dropping. By 0400 it was down to Force 7, and the storm was over - another of those six-hour Gulf Stream "local lows." (Yachting Magazine, September 1986, by permission).

Commodore Snyder's creation has caught on and many offshore yachts now carry a Galerider on board. The "flow-through" concept is rugged, simple, stable, and does not get turned inside out. The stainless steel wire hoop that keeps the Galerider's mouth open can be folded on itself, allowing for compact storage.

D/M-2 Monohull, Bermuda Ketch

JOSHUAD/M-2

Monohull, Bermuda Ketch

39' 6" x 13.4 Tons, Full Keel

Warps, Net and Pig Iron Drags

Force 10 Conditions


File D/M-2, derived from the writings of Bernard Moitessier - Vessel name Joshua, monohull, canoe-stern, center cockpit Bermuda Ketch build of steel, LOA 39' 6" x LWL 33' 9" x Beam 12' x Draft 5' 3' x 13.4 Tons - Full keel - Drogue: assorted drags used in concert, including 22 fathoms 4.5" hemp rope weighed down by 3 pigs of iron 40 lbs. each; 16 fathoms 3" hemp rope weighed down by two pigs of iron 40 lbs. each; 32 fathoms of 1.5" nylon rope trailing freely - Deployed while running before a mature storm in the high latitudes of the Southern Ocean with sustained winds of 50 knots and seas of 30 ft. - Joshua came near to pitchpoling several times and Moitessier elected to cut away all the drags.

 

Bernard Moitessier is undoubtedly one of the most extraordinary seamen that has ever lived. Fortunately he is an extraordinary writer as well. The critic Jonathan Raban once said, "I'd sooner read Moitessier than any other nautical writer alive." Indeed one never tires of reading Moitessier. He holds the imagination captive, from the first page to the last. Born in French Indo-China, Bernard's first odyssey was aboard his dilapidated junk, Marie Therese, which ran aground after a fifteen round - eighty five day - battle with a monsoon in the Indian Ocean. He then spent three years on the island of Mauritius, building Marie Therese II, which ran aground in the Antilles, after a long lonely Atlantic crossing. A few years later the resilient Moitessier had finished his book, Vagabond des Mers du Sud, and was in Chauffailles, France, getting married to "a little slip of a woman called Francoise" and overseeing the building of his new 39-ft. steel boat Joshua. In October 1963 he took Francoise "for a sail" on Joshua - across the Atlantic, through the Panama Canal, to the Galapagos and the South Pacific. The couple spent two happy, carefree years in Polynesia. In the winter of 1965 they "went sailing" again - Tahiti to Spain non-stop, via Cape Horn, 14,216 miles in 126 days.

It was on 13 December 1965 that Joshua ran into a heavy storm in the high latitudes of the Southern Ocean, mid-way between Tahiti and Cape Horn. Mindful of the experiences of Smeeton and Robinson, Moitessier deployed an array of drags to slow Joshua down - all told some 900 feet of heavy ropes weighed down by five 40-lb. iron pigs and a large heavy net used to load ships. Despite all the drag devices in tow Joshua came very close to sharing the fate of Tzu Hang - going end over end. As he struggled with the helm, Moitessier began to take stock of his situation and compare it with the experiences of other "Cape Horners," among them the renowned Argentinean singlehander Vito Dumas.

In the famous episode that followed we find Moitessier engaging the ghost of the Dumas in a debate, as it were. "But what was your secret, Vito Dumas.... You did it... and Legh II was a small boat... you carried sail, I believe you... but you couldn't have carried any sail in this kind of seas, don't spin me that yarn, for if you had carried any sail in these seas you would have been pitchpoled like Tzu Hang... and like Joshua, almost.... And yet, you covered the three oceans...." (Cape Horn, The Logical Route, Grafton Books, London 1987, by permission).

Moitessier then writes that he doesn't believe in ghosts, but could have sworn that he heard a voice - that of Dumas - telling him the answer. Once he had the answer he was aft, cutting away all drags and warps, allowing Joshua to run unimpeded on bare poles. He noticed an enormous change in her: "She had no longer anything in common with the wretched boat of the night before which had made me think of the little hunter trying to parry the blows of a gorilla, with his feet caught in the undergrowth." (Ibid.) Thereafter Moitessier adopted the technique of "putting down the helm," and Joshua began taking the seas more safely on the quarter. Later on in the storm, as they are sitting in the inside steering station, he explains the technique to his wife Francoise:

 

I'm running dead before the wind to keep the maximum speed on the boat and make sure that she answers on the helm when she has to. Now watch carefully, you see that wave coming up [behind]... I am still dead before... and just before the stern lifts I turn the wheel right down... You see... she heels over and veers to the right as she ought to... she is pushed forward and a little sideways... the moment the stern settles down again, just after the wave has passed I turn the wheel right over in the opposite direction to bring her back again stern on; this is the best moment because the rudder is deep in the water and very effective... you see... we are back dead before the wind, and the business starts all over again. (Ibid.)

Remarkably, Moitessier seems to be using his instincts to avoid pitchpole (see image in previous file). It must have been instinct because the phenomenon of orbital rotation was not well known at the time - nowhere in his writings does Moitessier refer to the orbital rotation of waves. Indeed, one can only infer that Moitessier must have been directed by some rare and spontaneous instinct peculiar to extraordinary seamen. By that, or by the ghost of Vito Dumas.

To fly dead straight down a wave face would have placed Joshua in the same head-over-heels predicament as Tzu Hang - the bow impaling itself in the approaching "current" in the trough as the stern was being hurled downwind by the motion at the crest. So, in maneuvering across the face of a wave (like a skier zig-zagging down a slope), Moitessier is in effect trying to cheat the pitchpole demon - trying to keep the bow from burying itself in the adjacent trough. To some extent the same principle is used by a surfer when he puts down his heel to "spin out" and disengage from the wave. Needless to say in order to execute this maneuver with precision over and over again in a storm, the helmsman of a sailboat would require the reflexes, the skill and the stamina of a Grand Prix driver, attributes that Moitessier no doubt possessed at that time, but hardly common to all sailors. Bear in mind also that Joshua was made of steel, had a canoe stern, a center cockpit, and an inside steering station where the helmsmen could concentrate on what he was doing, unaffected by the cold and the wet. It is interesting to note what the late Miles Smeeton had to say about this technique:

When Bernard Moitessier, that fine seaman, offers an opinion, it should be well considered, because he has twice sailed Joshua round Cape Horn... but his answer is not necessarily the right one for all yachts, any more than mine is, and it requires a superman to steer accurately like this through a dark night.... Even if his theory is correct for other yachts, tired men and irregular waves are apt to defy it. (Because The Horn Is There, Granada Publishing, London, 1984 & 1985, Appendix, by permission).

In 1982 Joshua was anchored in Cabo San Lucas, Mexico, when a tropical storm swept over the crowded anchorage. A large motorboat dragged down on Joshua, forcing her up on the beach, where numerous other yachts ended their careers as well. When the fiasco was over nothing remained of the famous boat other than her bare steel hull. Two brothers from Port Townsend, Washington bought the hull for $20 and spent two years rebuilding her, later selling her to a Seattle woman. The woman's dream of sailing Joshua around the world was rudely shattered by the indiscretion of her sailing partner - he turned out to be married. The French newspaper Voiles & Voliers heard about the affair and sent a photographer to Seattle. After the article - showing magnificent photographs of Joshua under sail - was published, a number of famous sailors banded together to form the Joshua Foundation. The French Maritime Museum then purchased the dear old boat, put it on a ship and took it to La Rochelle France, where she is on display today.

D/M-1 Monohull, Bermuda Ketch

HANGD/M-1

Monohull, Bermuda Ketch

46' x 12 Tons, Full Keel

Warp, 60 Fathoms 3" Hawser

Force 10 Conditions

 

File D/M-1, derived from the writings of Miles Smeeton - Vessel name Tzu Hang, hailing port Victoria, B.C., monohull, Bermuda Ketch, built in Hong Kong in 1938, LOA 46' x LWL 36' x Beam 11' 6" x Draft 7' x 12 Tons - Full keel - Drogue: Warp consisting of 360' x 3-inch manila hawser - Deployed while running before a storm in the high latitudes of the Southern Ocean with winds of 50 knots and seas of 30-40 ft. - The warp had little effect in preventing the pitchpole of Tzu Hang about 1000 miles from Cape Horn on 14 February 1957 - The yacht was sailed under jury rig to Chile, reaching Arauco Bay 36 days later.

 

This is probably the classic pitchpole in all of yachting history. All the major works on the subject of heavy weather tactics make mention of it. Adlard Coles refers to the 1957 pitchpole of Tzu Hang six times in Heavy Weather Sailing. In her two celebrated attempts to round Cape Horn, Tzu Hang was pitchpoled the first time and rolled the second. On the first attempt she was manned by a crew of three, owner Miles Smeeton, his wife Beryl, and the renowned singlehander John Guzzwell of Trekka fame, (Trekka Around The World, John Guzzwell, 1963).

Tzu Hang had been running before mature seas in the high latitudes (50° South) of the Southern Ocean, trailing 60 fathoms of 3-inch manila hawser. Unlike nylon, manila has the sponge-like quality of soaking up water and was at one time considered to be ideal for use as warps. In this case it was not very effective, for Miles Smeeton writes, "I watched the sixty fathoms of 3-inch hawser streaming behind. It didn't seem to be making a damn of difference, although I suppose that it was helping to keep her stern on to the seas. Sometimes I could see the end being carried forward in a big bight on the top of a wave." (Once Is Enough, Granada Publishing, London, 1984, by permission).

As the boat continued to run before the storm, one breaking wave did come aboard, but Tzu Hang showed little tendency to broach. She seemed to be doing quite well in fact. "It was a dangerous sea I knew, but I had no doubt that she would carry us safely through, and as one great wave after another rushed past us, I grew more and more confident." (Ibid.) At the time of the incident Beryl had just relieved Miles at the helm, and was steering the boat when a great wall of water approached from the stern, so wide that she couldn't see its flanks, so high and so steep that she knew Tzu Hang could not ride over it. Water was cascading down its face, like a waterfall. Miles was down below, reading a book: "As I read, there was a sudden, sickening sense of disaster. I felt a great lurch and heel, and a thunder of sound filled my ears. I was conscious, in a terrified moment, of being driven into the front and side of my bunk with tremendous force. At the same time there was a tearing cracking sound, as if Tzu Hang was being ripped apart, and water burst solidly, raging into the cabin. There was darkness, black darkness, and pressure, and a feeling of being buried in a debris of boards, and I fought wildly to get out, thinking Tzu Hang had already gone down. Then suddenly I was standing again, waist deep in water, and floorboards and cushions, mattresses and books, were sloshing in wild confusion around me." (Ibid.)

Beryl had been catapulted out of the cockpit and into the sea, landing some 30 yards to leeward. Miraculously she was able to swim toward the trailing wreckage of the mizzen mast. Her shoulder was badly injured and it took the combined strength of the two dazed men to pull her back on board. But the situation was now critical. Tzu Hang had received a near death blow. Both masts were gone and there was a gaping - six foot square - hole where the doghouse had been. The weather was not getting any better and she was taking on great amounts of water. She would no doubt have gone down, had it not been for the tenacity and sheer will power of her crew.

From the onset Beryl, although in great pain, did her best to provoke, spur and cheer the two men on into life-saving action. She was the driving force that kept resignation and despair at bay. And John "Hurricane" Guzzwell would soon put his resolve, his backbone and his skills as a carpenter to keep Tzu Hang afloat. He patched the hole in the deck. He sawed and hammered, laminated and improvised, putting back together the pieces that would - thirty six days later - bring Tzu Hang safely into Arauco Bay, Chile. What transpired in those thirty six days on the wastes of the Southern Ocean should serve as an important lesson to all sailors regarding the mindset that is so often crucial to survival itself, the lesson being this: Never give up.

What exactly happened? There is much speculation about the exact movement of the boat during the mishap. Miles Smeeton is certain that it was a somersault: "When she pitchpoled a very high and exceptionally steep wave hit her, considerably higher than she was long. It must have broken as she assumed an almost vertical position on its face. The movement was extremely violent and quick. There was no sensation of being in a dangerous position with disaster threatening. Disaster was suddenly there. Whether she had been 20° to it or her stern directly presented to it, or whether she had been running at 2 or 7 knots could, in this case, have made no difference. Her stern came up and just went on going with no hesitation at all right over the bow." (Because The Horn Is There, Granada Publishing, London 1986, by permission).

The reader may wish to compare Smeeton's observations with the statement of Joan Casanova (File S/T-1), who survived a similar wave in the Southern Ocean: "It was the type of a wave which pitchpoles yachts in these oceans, the type which every voyager sailing in the high latitudes of the Southern Ocean fears.... We want to stress here that no vessel, multihull, monohull or freighter, could have survived such a sea unless tethered with a long line from a sea anchor...."

Formula for Disaster
Formula for Disaster

 

Whereas a rising tide will lift a boat vertically by a force equal to her displacement (usually many tons), a steep wave will "lift" the same boat horizontally with equal displacement force (DF) at wave speed. Speed of molecular rotation is already about 7 knots on the crest of a 40-ft. wave (A). The decaying crest hurls tons of water at a wave speed of 20 knots at her transom (B). Force of gravity (C) drives the bow down into the adjacent trough where it is briefly met with 7 knots of reciprocal rotation coming from the opposite direction (D). Result: The stern goes flying right over the bow without any hesitation at all.

Miles Smeeton later wrote a short Postscript which may be the key to our understanding of the dynamics of pitchpole. This Postscript can be found on the last pages of Once Is Enough and includes the following remarks:

Since I wrote this book I have had a number of letters - mostly from well informed sources - on the reasons for Tzu Hang's two mishaps... the major cause was probably due to the orbital velocity of a big wave. I had never heard of this theory which is that, although the mass of water in a seaway, seen as a whole, is static, each particle of water moves in an orbit around the place which it would occupy at rest. If we were to throw some rubbish overboard so that it represents a particle of water on the surface, we would see it drawn back towards the approaching swell, lifted up, carried forward, and dumped in approximately its original position again; seen from the side it would trace an orbit against the background of sea and sky.

The important thing is the speed at which the water moves in this orbit, and for a forty-foot wave with a ten second period the speed is approximately seven knots. With seven knots on the top of the wave with the wind, and seven knots against the wind at the bottom, a forty-foot ship on the point of a forty-foot wave is subjected roughly to a seven knot push one way at her stern and a seven knot push the other way at her bow, a formidable overturning couple. A longer ship is already overcoming the push at her bow by the time her stern is subjected to the maximum thrust. The answer seems to be to keep forty-foot ships out of forty-foot seas, but if forced to run before them to tow long enough lines so that there is an effective drag in spite of the forward movement of the water on the crest.... (Ibid.)