S/M-38 Tayana Surprise

PRISANAS/M-38

Tayana Surprise

46' x 13 Tons, Fin Keel

18-Ft. Dia. Para-Anchor

Force 12 Conditions

File S/M-39, obtained from Stephen Edwards & Deborah Schutz, Henley Beach, South Australia - Vessel name Prisana II, hailing port Adelaide, Tayana Surprise ketch, designed by Pieter Beeldsnidser, LOA 46' x LWL 40' x Beam 13' 4" x Draft 6' 10" x 13 Tons - Fin keel - Sea anchor: 18-ft. Diameter para-anchor (Para-Anchors Australia) on 410' x 3/4" nylon three strand rode with 3/4" stainless steel swivel - Partial trip-line - Deployed in a storm in deep water about 75 miles west of Cape Bouvard (Western Australia), with winds of 65-80 knots and seas of 40-60 feet, with microbursts evident - Vessel's bow yawed 20-30° during 59 hours at sea anchor. Drift was affected by a southerly current.

This important file was initially forwarded by Alby McCracken of Para-Anchors Australia, to whom we are indebted. The sea anchor used was 18 feet in diameter, manufactured by Para-Anchors Australia. Stephen Edwards and Deborah Schutz are quite certain that it saved the boat. The winter storm that they ran into may have been reinforced by microbursts, judging by the thunderstorm activity, and by the tornado that left a 2-mile long swath of destruction through South Perth.

Deborah Schutz was kind enough to send a clipping from the July 17, 1996 edition of The West Australian. The headline reads "South Perth Hit by Rare Tornado." Accompanying photographs show the twister's fury as it rampaged through South Perth, taking roofs off of houses and uprooting trees. The Australian Weather Bureau's severe weather meteorologist, Tony Bannister, said the tornado probably originated west of Rottnest Island, traveling at about 80 km/h at sea, increasing in intensity and sporting 200 km/h winds when touching down at Perth.

Prisana II is heavy, with a lot of windage - two equal height masts, both with in-mast furling. She was en route to Dampier, Western Australia, from her home port of Adelaide, South Australia, when she ran into this freak storm.

Perhaps we have a recurrence of the same sort of freak events that Gold Eagle ran into in File S/T-15, where we find Dr. Andrew Cserny writing, "Sometime during the night we were hit by an immensely strong burst of wind which I presumed must have been a twister, because the pressure inside the pilot house fluctuated rapidly, the windows rattled, the doors to the pilot house rattled, and the sliding hatches tried to come off the top of the boat.... The wind shrieked horribly with pitch and intensity I have never heard before." Gold Eagle was later struck by a rogue wave. So was Prisana II, leading your authors to believe that these may have been microburst-generated ESWs - extreme storm waves. Transcript:

Sunday July 14th, 1996: By nightfall we were almost abeam Cape Naturaliste. Our weather fax showed a complex low was fast approaching. Due to our position, the unfamiliar coastline and the wind direction (40 knots NNE) there were no safe anchorage along the coast here in these conditions. Our motor was playing up and the option of using our sea anchor already considered, but due to the number of ships in the vicinity, we decided to keep going. We reduced sails, expecting the winds to swing SW with the approaching front, which we'd use to get us to Fremantle. We were wrong! Throughout the night Mother Nature unleashed a storm of unrelenting fury, NNE to 50 knots with large seas - our only choice to head out to sea [starboard tack].

Monday July 15th: At first light we came about [port tack]. Perth Radio issued another gale force warning. The barometer read 996 and was rapidly falling. By evening strong west winds were in force, the barometer now at 990, though seas had moderated. As the night progressed, squalls reached 60 knots and lightning could be seen behind us as we traveled in a northerly direction [parallel to the coast of Western Australia]. The ferocity of the storm was intensifying. The needle on our wind indicator went beyond the last notch (65 knots) and the seas were dramatically increasing in height. At approximately 0500 hrs a huge wall of water knocked us down. The helmsman stood chest-high in water (thankfully harnessed) and our masts leaned to starboard, touching the surface of the ocean. We deployed the sea anchor, then all crew below and hatches battened. At this point we were 30 nautical miles off Rottnest Island.

Tuesday July 16th: During the morning I ventured above to the cockpit and was immediately awestruck. The seas were incredibly huge. I soon retreated below. I later found out the seas were reported to be 11 meters on top of a 9 meter swell - the faces of the waves around 60 feet. We currently had plenty of sea room and were drifting in a southerly direction at 1 knot. The parachute anchor held us steady, as the winds, sounding cyclonic, whirled over 70 knots. Waves drenched the deck as we rolled from side to side. For 24 hours we drifted in this direction, towards Naturaliste Reef.

"Tuesday July 16th: During the morning I ventured above to the cockpit and was immediately awestruck. The seas were incredibly huge. I soon retreated below.... The parachute anchor held us steady, as the winds, sounding cyclonic, whirled over 70 knots." (Photo credit: Deborah Schutz).
"Tuesday July 16th: During the morning I ventured above to the cockpit and was immediately awestruck. The seas were incredibly huge. I soon retreated below.... The parachute anchor held us steady, as the winds, sounding cyclonic, whirled over 70 knots." (Photo credit: Deborah Schutz).

Wednesday July 17th: We were drifting east and we now know that we were in the Leeuwin Current. The Leeuwin Current runs southward down the continental shelf from Indonesia, bringing masses of warm water. It begins flowing around April each year, through October, seldom moving faster than 1 knot in a band approximately 50 kilometers wide. The weather remained unchanged. All day long the winds continued to blow over 70 knots and we were now down almost as far as Bunbury, having crossed over, above the Naturaliste Reef. A large cargo ship had just lost 30 containers off Cape Leeuwin. The Adelaide media reported that a cyclone had hit Perth.

Thursday July 18th: Conditions were moderating, winds now down to 50 knots and the barometer slowly began to rise - seas still large but easing. Late in the afternoon we retrieved the para-anchor (which wasn't easy), and she came up with a hole in her. Our 130 meters of rope had stretched an extra 20 meters. The wind now blowing 30-40 knots - felt like a mere breeze as we set course for Rottnest Island. Friday July 19th, around 1030 hrs we motored into the Fremantle Sailing Club, grateful that we had decided to purchase a parachute anchor. With it we were able to ride out and survive the conditions - our bow held into the seas. The Weather Bureau in Perth described the freak weather as a rare winter tornado. It struck the coast with 200 km/h winds.

In the face of this important file, Victor Shane contacted Deborah Schutz & Stephen Edwards regarding a few more questions, and received additional answers as follows:

Was the deployment fairly easy? We preformed a "Flying Set" and deployment was relatively easy. The anchor rode was fixed to a strong point at our bow, led aft and held in position by plastic cable ties at 6-inch intervals along the port side toe rail to a deployment bag containing 125 meters of 18mm 3-strand nylon anchor rode. This was set up prior to our departure from Adelaide to cross the Great Australian Bight. Deployment simply involved reaching from the safety of the cockpit to the rode deployment bag, unlacing the top - removing the end of the rode and shackling it to the parachute anchor. Trip line floats were then fed overboard, followed by para-anchor in deployment bag. Within approximately 30 seconds, we had taken up all the rode and the vessel was gently pulled into the wind, allowing us to lower the sails.

How did the boat behave at sea anchor? Generally it appeared to be falling off 20 to 30 degrees, though it's difficult to be precise as we were below deck for nearly the whole duration of the storm. Occasionally we fell back on the rode and fell away to somewhere near 45°, approx. once every half hour, maybe due to rogue waves coming in on a different angle - hard to tell from down below.

What about the disposition of the rudder? The rudder was lashed to center at the quadrant, which broke twice - 6mm pre-stretched cord broke first, then 16mm nylon braid also didn't hold. We managed to make it hold on 18mm nylon anchor rode. Small twist, 10-15° in 2-inch 316 stainless steel rudder shaft at the point where quadrant is fixed.

What about chafe? Due to the set up of 1 meter of chain at the bow we had no chafing.

Any green water come on deck? Yes, Steve said there was a small amount, compared to the 2-3 foot of white water that washed over the deck.

General impressions of strains involved? We've realized the attachment point on bow needs to be extremely strong. Parachute anchor was shackled to 1/2 inch chain link welded to ship's anchor. Our ship's anchor was stored below deck level via custom bow fitting [as with large ships, the forward part of the anchor left protruding out of the bow, and the para-anchor rode shackled directly to the ship's anchor by a 1 meter length of chain], then secured aft by 3/8 inch Ronstan rigging screws, secured to a 10mm stainless steel plate, bolted under the anchor winch. Winch and plate fastened by 6 x 3/8 inch stainless steel studs. Both the fixing point to the ship's anchor and to the plate were backed up by secondary systems. Ronstan rigging screw had 10mm chain back-up. Fixing to anchor was backed up by 5/8 inch stainless steel bolt, through anchor cheeks. Both systems failed! Ronstan rigging screw had 8 turns of thread removed. Back-up held, but ship's anchor smashed around, causing damage to our stainless steel bow fitting. Chain-link welded to ship's anchor was torn off and secondary chain from nylon rode took up the weight on 5/8 inch stainless steel bolt through anchor cheeks.

Did you use a full trip line? No, partial trip line - 2 floats and 2 x 15 meter lines with swivels.

Was retrieval easy? Not really. Wind was still strong (40-45 knots) and seas were still huge and getting steeper due to the shallowing depths as we got close to the coast - running out of sea room. Due to the noise from the wind and seas it was difficult to hear skipper's instructions from the bow to the helm and we fouled the rode on the propeller.

How big was the tear in the para-anchor? Two large, well frayed holes in two separate panels, between the venthole and the skirt.

Did the para-anchor save the boat? Absolutely!!! In the conditions we were caught in, we believe having our para-anchor set up, ready for deployment prior to leaving port, was crucial in the safe and easy deployment. Seas were huge - by far the biggest we had ever seen. Parachute rode was spanning one swell, being ripped out of the troughs and pulled taut. There was much white water being swept from the swell tops - large rolling loads of white water. Prisana II took many loads of white water across the deck, (maybe 2-3 feet of white water coming over the bow). The conditions were so bad that it was impossible to be anywhere on deck. We used a harness just to visit the cockpit - almost all of our time was spent below deck. The noise of the wind whirling outside was incredible.

We had a close encounter with a container ship slowly jogging into the storm, headed our way on the dawn of day two. Our radio contact was first answered by another ship, Australian, six miles away, and they informed us that this container ship was a foreign vessel, also mentioning that they didn't envy us one bit. After ten long minutes the container ship finally answered our call and his broken English caused us a minor panic - he didn't seem eager to alter his course! He told us he had no ballast and that he couldn't even see us! After persuading him to alter course by 10-15 degrees he passed us by only 0.4 nautical miles away - confirmed by our radar. The seas were so big that we were totally losing sight of this container ship (approx 400 foot long with an extensive bridge structure) behind the swells.

 

S/M-37 Monohull, Pearson 424C

PEARSON4S/M-37

Monohull, Pearson 424C

42' x 11 Tons, Low Aspect Fin Keel

18-Ft. Dia. Sea Anchor

Force 8-9 Conditions

 

File S/M-37, obtained from William T. Dwyer, Jr., Chicago, IL. - Vessel name Overdraft, hailing port Chicago, Pearson 424C cutter, designed by William Shaw, LOA 42.4' x LWL 33' 8" x Beam 13' x Draft 5' 6" x 11 Tons - Low aspect fin & skeg rudder - Sea anchor: 18-ft. Diameter Para-Tech on 300' x 5/8" nylon braid rode with 5/8" stainless steel swivel - Partial trip line - Deployed in a gale in deep water about 350 miles NW of Bermuda, with winds of 35-45 knots and seas of 12-20 feet - Vessel's bow yawed 20° - Drift was undetermined due to the proximity of the Gulf Stream.

The Gulf Stream is a 60-mile wide, swift (up to 5-knot) eastward flowing current. Past Cape Hatteras the stream is known to meander from side to side like a river. These meanders may change periodically, peeling off from the main body of the stream to form intense eddies. The eddies are sometimes called "rings." As the Stream moves eastward, warm rings are formed to its north and cold rings to its south. These discrete rings often migrate and meet back up with the main body of the Stream after months, or sometimes years.

Since the Gulf Stream transports warm water from southern latitudes one can usually tell whether one is entering or exiting it by the abrupt change in water temperature. At its edges, and deeper down, the Stream consists of a distinct, temperature gradient. This thermal gradient may extend deeper than 6000 ft. beneath the Stream.

Since cold water tends to dive beneath warm water, theoretically it may take a large sea anchor down with it - if it is deployed at an exact boundary zone. This is something that one has to be cautious of if one has to use a sea anchor in the Gulf Stream, especially in the fringes of a cold eddy. If this is the case one should rig a full trip line, one that allows the canopy to be readily tripped and retrieved without having to power up to the secondary float of a partial trip line. Otherwise the anchor may have to be cut away. There may be a possibility that this is what may have happened in the case of the S/V Overdraft. Transcript:

We departed Newport, RI on the afternoon of June 1, 1997 bound for the Mediterranean via the Azores. NOAA and a private weather forecaster called for NE winds 20-30 kts and recurring low pressure systems along a frontal boundary lying east to west along the 40th parallel, dropping to the southeast. Our plan was to sail SSE to approximately 38° N where we would cross the Gulf Stream and then sail SE until we encountered the westerlies. The going was rough, with winds from the NE higher than predicted.

Some time in the early morning of June 3, we entered the Gulf Stream heading south. Winds over the prior 24 hours had been NE at Force 6 to 7. Throughout the morning, winds increased to Force 8 to 9 with one observed gust of 55 kts apparent. We were sailing downwind in a following sea doing 8+ kts by the speedo. The waves became tall (10-12' with frequently higher waves of approximately 20'), and steep, as the seas ran counter to the Gulf Stream. Graybeards covered the sea as the tops of the waves broke against the current. We were sailing almost due south with the wind against the current, and although our knotmeter was registering hull speed, we were making approximately 4 kts over the bottom according to the GPS. I determined that we could not exit the Stream before nightfall on our current course, and decided to attempt to head ESE to escape these dangerous conditions before dark.

We proceeded ESE under staysail, deeply reefed main and engine to maintain as much directional control as possible. We took the non-breaking waves just aft of the beam and fell off to take the large breakers on our port quarter, or headed quickly up to take them at a 60° angle off the port bow. On three occasions when attempting to run off we were caught by a breaker and broached to starboard with the spreaders in the water and the wave breaking over the port side, filling the cockpit with 2½ feet of green water. By dusk we had reached the edge of the Gulf Stream, which we determined by a significant drop in water temperature. The waves became more trochoidal [rounded] in shape with fewer breakers. I decided at this point to set the sea anchor for the night as the crew had experienced miserable weather for three days and had no food or sleep for almost 24 hours.

An 18 foot Para-Tech sea anchor was deployed off the bow on 300' of 5/8" nylon braid line with 5/8" stainless swivel and no chain. The para-anchor had the standard float line with a 12" diameter plastic float buoy securely attached. After deployment the boat lay bow to the wind and did not yaw significantly from side to side, although Overdraft continued to pitch sharply, as the seas, while improved, were still quite steep. The boat lay to the sea anchor all night in winds of Force 7 decreasing to Force 6. Seas remained at about 8 feet.

At first light, we found that the rode was pointed downward at an angle of 35-45° off the port bow. Overnight the rode had chafed through the teak cap rail below the chock in an arc, cutting downward 3/4" to 1" into the wood. It was apparent that the boat was being pulled by the para-anchor in a northeasterly direction against the wind and sea. A comparison to the position check at the time the anchor was set showed we had move NE more than 3 nm overnight. The strain on the anchor rode was significant.

We attempted to retrieve the sea anchor by motoring in the direction of the anchor and pulling on the line - without success. The anchor seemed to dive deeper as we motored towards it, and we were only able to recover line as the boat rode down into a trough. As Overdraft rode back up the next crest, the rode was cleated and came under extreme tension with the anchor pulling downward on the bow. The wind was beginning to increase again and I feared that the crew attempting to retrieve the anchor by uncleating and cleating the line between waves could suffer serious hand injury, given the tension on the rode and the sea states. At this point I cut the anchor away. We had only recovered about 10 feet of line.

My supposition is that we had not sailed completely out of the Gulf Stream, and that the sea anchor was pulled downward by the northeasterly flowing current which may have been stronger at depth because of the counter-acting surface conditions caused by wind and waves. I do not believe the float became detached as it was securely tied and floating free upon deployment. Clearly, we were still in the influence of the Stream or we could not have moved northeast overnight against the wind and sea. An attempt to plot our position on a May 30th Gulf Stream analysis weather fax is enclosed, and it shows us at approximately the edge of the Stream on 0700 June 4. I find our overnight drift the more compelling evidence that we were still in the Stream because the potential plotting error of both the boat's position and the Gulf Stream location on this large scale fax is very large. For what it is worth, I don't believe setting the para-anchor in full current of the Gulf Stream in the conditions we experienced would have been a successful strategy. Because of the steepness of the seas and their frequent breaking, the boat would have taken a terrible pounding. The current would have pulled us NE into the seas, and because the anchor "dove," the bow would have been held down, further impeding the boat's ability to ride over the breaking seas. This experience has convinced me that (not even considering the loss of the gear) a sea anchor should not be set in a strong current running counter to the wind and seas except in a case of absolute last resort.

 

NOAA chart of the Gulf Stream for 30 May 1997.  X marks the location of Overdraft. (Courtesy of JENIFER CLARK'S GULFSTREAM).
NOAA chart of the Gulf Stream for 30 May 1997. X marks the location of Overdraft. (Courtesy of JENIFER CLARK'S GULFSTREAM).

CAUTION: Do not deploy a large sea anchor in the axis of a major current unless it is absolutely necessary. Use a full trip line if you do, else stand ready to cut away the rode if you are absolutely certain that a cold eddy is taking the parachute down into the depths. You will be able to tell that this is so when the main float begins submerging and then finally disappears, by the significant increase in the angle at which the rode is leading downward, and by an unmistakable downward pull on the bow of the vessel.

If you are in the vicinity of a major current and there is a gale on the way, the best strategy is to try to traverse the current at right angles and get well clear before deploying the sea anchor. By and large ocean currents are a mixed blessing. The free ride that they may provide can be very costly at times. Some experienced sailors prefer to stay out of them altogether. The Pardeys have this to say about major currents in Storm Tactics: "Another thing we've learned the hard way is to avoid the axis of major currents. Even though it is tempting to grab the free lift offered by the Gulf Stream, you increase your chances of meeting unusual weather patterns and rougher seas."

S/M-36 Arpège 29 Sloop

ARPEGES/M-36

Arpège 29 Sloop

29' x 3.6 Tons, Low Aspect Fin/Skeg

12-Ft. Dia. Sea Anchor

Force 8-9 Conditions

 

File S/M-36, obtained from Eleanor Tims, West Hagbourne, England - Vessel name Moon River, hailing port Southampton - Arpège sloop, designed by Dufour, LOA 29' x LWL 22' x Beam 10' x Draft 5' x 3.6 Tons - Low aspect fin keel & skeg rudder - Sea anchor: 12-ft. Diameter Para-Tech on 300' x 5/8" nylon braid rode with 1/2" stainless steel swivel - Partial trip line - Deployed in a gale in deep water about 50 miles north of Casablanca, with winds of 35-45 knots and confused seas - Vessel lay broadsides to the seas due to fouled sea anchor - Drift was about 80 n.m. in 32 hours.

Eleanor Tims has been a die-hard sailor for twenty years and has her own sailing school in the UK, offering practical boat handling and confidence-building courses. She has cruised her Dufour Arpège 30 out of Hythe Marina in England, sailing nearly 5,000 miles a year, now and then shaking a white-knuckled fist at Fastnet Rock on a passage to the fair harbors of Ireland, or waving a hasty goodbye to Ushant Island on a wind-driven - compulsive - jaunt to Santander harbor on the northern coast of Spain.

Eleanor is addicted to sailing. She has written many articles describing some of her hair-raising experiences at sea, the most infamous of which took place in the Bay of Biscay in 1994 - Force 9 and 25-foot seas, the mast about to come down, crew seasick, the diesel and the VHF dead, a roller furling genoa in ribbons and turned into screaming banshee, rocky islands and shoals looming close in the night, etc. etc.

Somehow the indefatigable, indomitable Eleanor Tims manages to emerge from such ordeals with a wave, a nod, a wink and a wicked sense of humor. Where would we all be without our sense of humor at sea?

In November 1996 Eleanor and friend Tom were sailing Moon River to the Canaries from the Moroccan harbor of Mohammedia when they ran into a gale and tried to deploy a sea anchor. What follows is a hard-won lesson that the lady would like to pass on to others:

We left Portugal for the Canaries with a favorable NE wind and decided to divert to Casablanca, Morocco, in order to break the long 600 mile leg into two stages and also to visit an "exotic" country. After leaving the harbor of Mohammedia our tack lay to the SW, but the wind, which had been from the NE for a long period, did a complete volte-face and came from the SW. I decided, nevertheless, to leave, as the forecast was for Force 5/6 and I thought that I could lay in a long tack to the NW and then to the South and perhaps the front would pass over in that time. However, things did not work out according to plan, as firstly there were very big seas running and secondly the wind increased past Force 6, to 7 and then 8. We were already becoming very tired and it was obvious that the time had come - indeed was past, as it was now dark - to put out the para-anchor.

Because it was dark, I took a long time in carefully preparing everything to ensure that is would run smoothly when launched, perhaps an hour. When I went up onto the foredeck, it was found that the deck-light was not functioning, so I had only the fitful light of a flashlight shone from the cockpit towards me. First of all I launched the pickup buoy and line, followed by the float buoy, but these were torn from my hands by the wind (nearly 40 knots) and by waves sweeping over the deck and over me. I then realized that the genoa furling line made things complicated and that I ought to have launched all this gear beneath the furling line instead of above it, so I pulled it in and tried to stuff it back into the sea under the line instead of over. Trying to do this caused a tremendous snarl-up, so I was forced into spending a long time lying sprawled on the deck in the almost continuous dark, with waves washing over me, trying to sort it all out. Eventually I decided I had it just about right and once more launched it all, following it finally with the para-anchor and 100 metres of rode. This done we turned in. However, things didn't seem right somehow. The bow was clearly not pointing into the waves, as every wave swept us over sideways, sometimes very nearly beam on, is how it felt. We were quite clearly lying ahull, and an inspection of the wind instrument confirmed that wind and waves were beam on. We passed an entirely wretched night, and were so tired the following day, with the wind steady at about 40 knots, that we were too tired to do anything much about remedying the situation. I did realize that the para-anchor hadn't opened, and as I could see both buoys close together, I also realized that the whole lot had snarled up together. We attached the rode to the [steel] anchor and let out a few metres of chain, so that it now ran out of the boat through the bow roller instead of through a deck fair-lead. This didn't improve things at all, in fact it probably worsened them, as I suffered some damage to the bow roller as a result. We had another perfectly horrible day, drifting backwards for the Strait of Gibraltar, far beyond our original starting point [more than 60 miles].

Day 3 saw me in more positive mood. "We have to get this thing in," I told Tom, so he did the muscle work. The wind was still 30+ knots and it took us about 50 minutes to bring the bundle in, and then the sad story could be seen. What had happened was that the tripping line had twisted round and round itself until it was as stiff and unwielding as a metal spring and that this metal-like mess had ensnarled with it some of the shroud lines of the para-anchor. (The latter had not opened - had just lain in the water like a lump of cloth). Later, on arriving at a harbor near Cadiz when I was able to put it all out onto a dock and try to disentangle it, I found I had to cut away the tripping line - it had practically fused into a couple of "springs." These had abraded 11 of the 12 shroud lines and had indeed broken three of them. I knew I should return it to the factory [for repairs] but I did not dare let it out of my hands. I knew I would need it again and I intended to use it again. So I took it to a local sailmaker, spread it out on his floor and we agreed as to how to repair it. He sewed some very strong sailmaker's tape into the shroud lines, restoring them all to a good state and ensuring that they were all the original length.

On Christmas day we left again for the Canaries. Same story. Weather got bad, decided to put out the para-anchor and this time to do so before dark. I had bought a new tripping line, 50 metres of floating line. This went out OK, then the float buoy.... Got the float out and the parachute. Absolutely brilliant! The bow came right round into the waves and yawed from side to side, but I could see the parachute had opened. Good, so far, I thought. I then uncleated the pickup buoy, stood up and tossed it into the sea over the pulpit. I had cleated off the anchor rode at about 20/30 metres, and was going to let more out in progressive lengths. However, I never got as far as that because in a twinkling the parachute had opened, the rode-tightened to steel-bar tautness, and, horror of horrors, not only was it leading OVER the pulpit, which folded down as if made of butter, but it was also once round the forestay and my precious furling gear. How that happened I have next to no idea because I thought I had been very careful... I think this story illustrates the dangerous effect of being tired and maybe also of being short-handed.

OK, still enough daylight, probably, to winch it in and start again. However, we were hampered by the weather conditions from doing anything at a reasonable sort of speed. Rain, like a dense monsoon, fell like rods of iron, flattening the sea, doing a sort of white-out and flattening me too! Eventually got the chute back on deck. Exhausted. And dark now. OK, why didn't I motor up to the pickup buoy and pick it up? Because as I hadn't stitched the damned knot up, just tied it to the [float-line] swivel, it had come undone and is now floating happily around the north Atlantic, trailing its new rope!

Well, it was dark, I was soaked and exhausted, and felt unable to sort out the mess of lines, so bungeed it all away and off we went into the night and Force 7/8 - increasing - big seas, 4-6 metres. Later the night turned into a nightmare. I was making very poor progress with small sails, only about 2 knots, and a ship (whose Officer on Watch was clearly not on watch as I even fired a flare) collided with us! In order to prevent the mast from falling (an upper shroud was torn away) I decided to go back - 200 miles - to Cadiz. I think I am lucky to be alive, as after that the wind increased to 40+ kn steadily, gusting up to 55, and we had to hand-steer under the most minute sails, in waves that must have been 8-10 metres high....

Somehow - by hook or by crook - Eleanor managed to outdo Neptune and bring her ship back into safe harbor at Cadiz, whence she contacted Victor Shane. Shane then passed her feedback on to Don Whilldin of Para-Tech Engineering in Colorado.

Although it would appear that in this case the para-anchor and float line assembly may have been fouled even as they hit the water, Whilldin nevertheless went to work on the design of the Deployment Bag, to see if there was any way in which he could somehow further reduce the chances of float line foul-ups. The simplest solution, of course, would have been to forego the float-line altogether. Unfortunately the float line and float are necessary to keep larger para-anchors from sinking straight down when the wind dies.

So Whilldin made a modification to the deployment bag instead. The thirty feet or so of colored float line, previously coiled outside the Deployment Bag, is now tucked into a "kangaroo pouch" under it. With this minor design change there is less chance of float line foul-ups. Whilldin reasons that once the parachute has opened up and is under stable tension the chances of float line foul-ups are greatly reduced. Likely most of those foul-ups occur in the pre-inflation stage, when the parachute is a shapeless mess of loose cloth and shrouds.

Don Whilldin sent the English lady stranded in Spain a brand new sea anchor, in appreciation of her contribution to design improvement. The redoubtable Eleanor Tims has since crossed the Atlantic.

S/M-35 Fast 40 Sloop

FAST40S/M-35

Fast 40 Sloop

40' x 3 Tons, Lifting Keel

12-Ft. Dia. Sea Anchor

Force 7-8 Conditions

 

File S/M-35, obtained from Robert J. Bragan, Bethesda MD. - Vessel name Javelin, hailing port West River - Fast 40 sloop, designed by Alan Adler, LOA 40' x LWL 36' x Beam 8' x Draft 7.5' (with keel down) x 3 Tons - Lifting keel (fiberglass-encapsulated 2000 lb. lead bulb on end) - Sea anchor: 12-ft. Diameter Para-Tech on 300' x 5/8" nylon braid rode with 1/2" stainless steel swivel - No trip line - Deployed in a gale in deep water about 300 miles west of Bermuda, with winds of 30-40 knots and seas of 12-15 feet - Vessel's bow yawed 30° with riding sail on backstay - Drift was about 5 n.m. during 12 hours at sea anchor.

An ultralight ocean racer designed by Alan Adler, this yacht was one of fifteen Fast 40's built in the 1980's by North End Shipyards of Rockland, Maine. Given her narrow beam, slender profile, low displacement, and high-tech construction, she was aptly named Javelin by her owner.

En route to Bermuda in May 1996, Javelin ran into bad weather and hove to a sea anchor. After the weather moderated she got underway again. And that's when her 2000 lb. lifting keel fell off. The yacht rolled over and subsequently had to be abandoned. Rob Bragan's brief hand-written note on the back of the DDDB form reads, "the 12 ft. sea anchor performed beautifully once anchor riding sail set on backstay."

The following is a transcript of Rob Bragan's article about the incident, appearing in the September/October 1996 issue of Ocean Navigator (reproduced by permission of Ocean Navigator Magazine):

We sailed Javelin extensively on the [Chesapeake] bay in all sorts of weather, including winter gales. Experience caused us to add stand-up blocks on the cabin top for double-sheeting the trysail, as well as a 12-foot Para-Tech sea anchor, a wind vane self steering system, anchor riding sail, detachable furling system for the Yankee jib, and many other improvements. In two years I hauled the boat twice, initially for a survey that found no problems and later to fair and paint the keel and hull. The keel assembly [2000 lb. fiberglass encapsulated lead bulb] was inspected each time, but only after losing Javelin did I learn that the previous owner had found broken bolts among those that secure the Delrin blocks and had replaced all four bolts twice. (A good maintenance log might have saved the boat by recording such details for subsequent owners).

On Friday, May 24, 1996, after picking up a rented Viking life raft and an ACR Type B 121.5/243 MHz EPIRB (406 MHz units cannot be rented) from Outfitters/USA services in Annapolis, we left our mooring in Galesville, MD....

Transitioning from Chesapeake Bay sailing to ocean sailing as night fell, we left the coast behind. Our course of 150° magnetic led to a waypoint NE of Cape Hatteras where the [Gulf] stream was only 80 nautical miles wide.... A pod of 30 to 50 spotted dolphins greeted us as we entered the stream, and they stayed until a tail slapped to starboard calling them off to the south. Were they moving away from impending bad weather?

The wind strengthened from the NNE on May 30, reaching a sustained 28 to 32 knots (Force 7) at the masthead anemometer by afternoon. The sea state increased from a few feet in the morning to 10 to 15 feet with occasionally larger, breaking waves, by evening. The 65° water temperature, knotmeter, and GPS readings all suggested we were in the wrong quadrant of a cold eddy which was aggravating the sea state. We put the second drop boards in place, secured the sliding hatch and hand-steered a beam reach, turning up and over bigger waves. The back sides of some waves were as steep as the fronts, requiring another turn at the wave top to set a good angle down the back and avoid slamming the boat....

After battling the waves for hours, the prospects of further exhausting ourselves with hand steering or deploying a drogue and losing miles by running off to the SSW were unacceptable. Lying ahull or heaving to were out of the question since Javelin had been too lively in past attempts and since the steep, breaking waves could roll the boat if she were caught broadside. Our position was approximately 400 miles from Bermuda, 10 to 20 nm south of the rhumb line. It was the right time to deploy the sea anchor. I had made up a dual-purpose sea anchor/drogue bridle of 3/4 inch three strand nylon line a few weeks before that would be strong and resist chafe. The bridle, shackled to stainless steel lifting plates on the aft end of the keel case, ran forward and through the rubber bow anchor rollers, terminating in a heavy thimble clamped in place. Three hundred feet of 5/8-inch braided nylon anchor rode was now shackled between the bridle thimble and the sea anchor. Strong attachment points on the boat, chafe protection, and a long, braided elastic rode are necessary components of a sea anchor system.

Deployment involved Tim's steering us through a 150° turn to point up into the wind, at which time I fed out the sea anchor float, trip line, deployment bag, and rode from the bow. The boat immediately fell off onto port tack before Tim could drag the trysail down. I fed rode and Tim wrestled sail until finally the rode came taught and we were pulled around.... A few minutes after the messy set, we were riding to the sea anchor and Javelin began her anchor dance. She was sailing through a 90° arc, so that breaking waves threatened to throw her sideways.... Setting the 15- to 20 square-foot anchor riding sail on the backstay with double sheets led forward to the toerails reduced the boat's arc to less than 60°.... With the cockpit secured, we closed ourselves up inside the boat to rest. Both the boat and we had taken a pounding during the last 12 hours. We needed food and sleep....

The next day and a half brought NE winds at 18 to 25 knots and six-to 10-foot seas, so we recovered the sea anchor and set sail that day, continuing on through the night making good speed and staying on course. We lay to the sea anchor on the night of June 1 as the wind clocked to east and strengthened. On June 2 we again set sail, but 20 to 30 knots of wind out of the ESE nearly halted our progress, and we made only 40 nm to the south. Early that evening we again set the sea anchor to hold our position while awaiting a better wind direction. Sounds from the keel that were louder than usual caused Tim to raise it into its case for support....

We awoke on the morning of June 3 to the first beautiful day of the trip. The wind had rounded to the SW at last and moderated to 10 knots. The sky was clear for the first time, the waves were running three to five feet and we only had a couple of hundred miles to go.... We lowered the keel and put the aluminum brace back in place.... Upon recovering the sea anchor, we raised the mainsail. As it filled, the boat heeled a little... a lot... and continued to lay over until flat on her side. It happened so gently.... After pausing for a few seconds, Javelin finished turning turtle, leaving us alongside trying to comprehend what had happened in less than a minute. We climbed onto the hull and peered into the empty keel case. The four bolts that had secured the keel to the Delrin blocks on either side were sheared off, leaving the heads on one side, tails on the other, and nothing but air in between....

After getting over the initial shock, Rob Bragan and son Tim inflated the life raft and quickly resigned themselves to the serious business of survival, diving and retrieving 20 gallons of water, food, blankets etc. from Javelin's upturned hull. The EPIRB was then turned on and the raft allowed to drift free of the mothership.

A short while later they spotted a passing ship and fired off parachute flares, but it did not see them. Just before sunset however, a Coast Guard C-130 roared overhead. Crew members on the aircraft reportedly saw Javelin's upturned hull first, and Bragan reckons that they should have remained tethered to the hull for as long as possible to be easier to see. Later the Italian bulk carrier Ursa Major was diverted to the scene and plucked the waterlogged sailors out of the Atlantic.

S/M-34 Tahitian Ketch

ORCAS/M-34

Tahitian Ketch

55' x 40 Tons, Full Keel

24-Ft. Dia. Sea Anchor

Force 12 + Conditions

 

File S/M-34, obtained from Robin and Maggi Ansell, Campbell River, B.C. - Vessel name ORCA, hailing port George Town (Cayman Islands) - Tahitian Ketch, designed by R. Hartley, LOA 55' x LWL 47' x Beam 13' 6" x Draft 7' x 40 Tons - Full keel - Sea anchor: 24-ft. Diameter Para-Tech on 500' x 1" nylon braid rode with 5/8" stainless steel swivel - No trip line - Deployed in cyclone Justin in deep water about 200 miles off the coast of Queensland, with winds of 65-85 knots and seas of 33-40 feet - Vessel's bow yawed 25°- Drift was 80 n.m. during 53 hours at sea anchor.

ORCA was on the Pacific leg of her planned circumnavigation when she was caught in the web of cyclone Justin 200 miles off the Queensland coast. The largest cyclone in 20 years, Justin caused millions of dollars in damage, capsized barges, left two people dead, twenty three missing and many homeless. Scores of RAAF and US fighter aircraft and fifty warships had to be evacuated from Townsville as Justin tore into a massive joint military exercise - Operation Tandem Thrust.

ORCA might have emerged intact had the cyclone moved on, instead of stalling overhead. Finding themselves boxed in against the Great Barrier Reef, ORCA's skipper and first mate decided to put down the sea anchor.

"Without the sea anchor, they would have found us on the reef," said owner Robin Ansell in a telephone conversation with Victor Shane.

Deployment of the large sea anchor and 500' of 1-inch line was difficult and further exacerbated by some sort of toxic, chemical mist emanating from the wet rope itself. All told ORCA remained tethered to the sea anchor for 53 hours, lying about 50° to the wind (no bridle).

One can only imagine what the conditions must have been like. In an interview with the Townsville Bulletin, Robin and Maggi said "It was like the water was boiling... it didn't have a pattern to the swell. It just hit us from all sides."

The yacht was eventually holed by a rogue wave. "We were hit by a wave which put a hole in the galley and a similar rogue wave tore two ventilator boxes off the deck. We tried to stuff them to stop the water coming in but we realized we couldn't keep up with it."

The couple had to put out a Mayday. Senior Queensland Emergency Services helicopter pilot Peter Hope said it was the worst weather he had ever flown in. He said, "The majority of the swells were 10m but the mast of the yacht was 18m and there were times when you couldn't see it over the top of the waves." Here is a transcript of the DDDB file Shane obtained from Robin and Maggi Ansell:

We were already in very rough sea conditions when we deployed the para-anchor, because for as long as was viable, we motored across the seas to give us as much distance from the Great Barrier Reef as possible. We deployed it through our starboard side bow roller, and once the parachute had opened up, gradually let out the line by having it wound round the mooring bits. The scariest part of the whole thing was being temporarily blinded, which appeared to be caused by the acrid-tasting spray emanating from the rope, which was wet from the rain and salt spray, and squeezed out as a fine mist when it was pulled extremely tight as it was being run out round the mooring bits when we were struggling to let out the line with some control.... In any case, it is a potentially lethal situation, when one can only see vague shapes, and it is impossible to read instruments, etc. for 24-36 hours. (I couldn't even read the bright green of the radar screen). The absolute agony of the burning feeling under the eyelids, and the constant running of the eyes trying to rid themselves of the foreign matter was unbelievable, similar to a severe case of "arc eye." Fortunately we just stayed on the para-anchor, and vision started improving after 24 hours. There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe, also the load on the anchor line made the line like a steel rod, and one could never have got any slack to be able to replace a chafe guard. Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller. This took care of the chafe, as it was impossible to go forward again as far as the bow during the rest of the 53 hours at anchor before our rescue. The next day, only by peering through the window by the internal steering station, when the vessel was at the bottom or top of a trough, could we sometimes catch sight of the white line leading away from the boat. Then as vision improved we could watch the drift on the GPS, which seemed to average out at about 1.5 knots.

We had deployed the whole 500 feet of line, which probably was not enough in those conditions, but once deployed, it was too dangerous to consider adding further line (of which we actually had another 800 feet). Also we did not employ chain for catenary, on this our first use of the anchor. We would guess that the wave length was probably about 150 feet. The rescue pilot said that the yacht was coming off the waves at 12 knots, since he had to reverse at 12 knots to maintain distance from the top of the mast as we rolled up the waves. He was probably hovering at about 100 feet from the water, and the top of our mast was 70 feet from the water.

There were occasional maverick waves, which were double-crested. The result of which was that we rolled over the first crest straight into the advancing front of the second crest, instantly halting the vessel's roll. Roll rate was up to something like 60 degrees per second, so not only were tons of green water dumped over the vessel but the impact on the hull and superstructure was phenomenal. This is what lifted sealed and battened-down hatches pouring in gallons of water and later broke the galley portlight, and subsequently ripped off the starboard dorades and smashed the safety line stanchions. We probably had about 6 [rogue waves] during the 53 hours before being rescued, each sounding and feeling as if one had been hit by an express train. Each increased in severity until the last two were responsible for the physical damage to the vessel.

Once we had issued the Mayday, we spoke via Townsville Radio and subsequently Sydney Radio to the rescue operations center at Canberra, and were informed that a rescue operation was being put in hand. Within an hour we heard that there was a US Hercules in the area to locate us, that a Rescue Helicopter had departed Townsville with an ETA at our position in 50 minutes, and that a Flying Doctor Service Beechcraft King Air with life rafts would be on station if the helicopter had to abort. We activated our Class 1, Type 406 Satellite EPIRB when instructed. Later we were told by our rescuers that without the EPIRB there was no way they could have located us in such atrocious conditions. We then followed their instructions to the letter, to enable the rescue to take place.

We were rescued on 9th March. We have subsequently heard that Townsville took a double hit from Cyclone Justin on 22nd March and suffered significant damage. For a couple of days following our rescue, Townsville Radio issued the position of ORCA as a hazard to shipping. Then the bulletins stopped, and she is assumed sunk.

ORCA of George Town. This Tahitian Ketch used a 24-ft. diameter sea anchor to stand off the Great Barrier Reef in cyclone Justin. "There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe.... Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller." (Maggi Ansell photo).
ORCA of George Town. This Tahitian Ketch used a 24-ft. diameter sea anchor to stand off the Great Barrier Reef in cyclone Justin. "There was absolutely no possibility in our weather conditions of being able to go forward each hour to check for chafe.... Realizing this from the start, Robin attached a ten foot length of half-inch section anchor chain to the eye of the line, which ran through the starboard bow roller." (Maggi Ansell photo).

S/M-33 Gaff Rigged Ketch

GAFFS/M-33

Gaff Rigged Ketch

38' x 19 Tons, Full Keel

15-Ft. Dia. Sea Anchor

Force 5 Conditions

File S/M-33, obtained from Roger and Debi Brown, Port Townsend, WA. - Vessel name Tropic Tramp, hailing port Port Townsend - One-off gaff-rigged ketch, designed by Paul Snow, LOA 38' x LWL 35' x Beam 12' x Draft 6' x 19 Tons - Full keel - Sea anchor: 15-ft. Diameter Para-Tech on 400' x 3/4" nylon braid rode and 80' of chain, with 5/8" stainless steel swivel - Partial trip line - Deployed in a low system in deep water in the Tuamotus about 300 miles NE of Tahiti, with winds of 20 knots and seas of 15 feet - Vessel's bow yawed 10° - Drift was 16 n.m. during 44 hours at sea anchor.

On her passage to Tahiti, Tropic Tramp ran into a gale in the Tuamotus and hove-to for a night under sails. With 15-20 foot seas still running and the wind contrary, the sea anchor was then deployed to anchor this classic, gaff-rigged ketch to the misnamed Pacific and wait for better conditions. Tropic Tramp stayed "anchored" for two days and two nights. Transcript:

We deployed the sea anchor for several reasons.

1) First time use and sea conditions were right.

2) We hove-to [with sails alone] and found we drifted more than we felt comfortable with.

3) Our jib needed a lot of restitching.

4) We were gaff-rigged and headed west towards Tahiti, the winds were out of the west, and being a perfect gentleman beating into that didn't seem like a lot of fun.

I felt this had all the qualifications for deploying our sea anchor. The storm had been at gale force during the night and our heading to get us past the atoll was not bad. We felt we had sea room by now, and no current. Plus, the worst of the storm had passed. Deployment went easy and as planned. We used 400' of rode and 80' of our 3/8" chain, and a 70 lb. anchor, which gave us a great rest. No jerking. The 50' [partial] trip line let us retrieve effortlessly.

After 44 hours, seas were flat, wind SE at 12 knots. A perfect sail into Tahiti, fully rested. Caught two 42" wahoos! A lot of other boats were very interested in all the "facts" of our experience at sea anchor.

S/M-32 Hunter 31 Sloop

HUNT31S/M-32

Hunter 31 Sloop

31' x 5 Tons, Fin Keel

15-Ft. Dia. Sea Anchor

Force 8 Conditions

 

File S/M-32, obtained from Chris Brann, Sausalito, CA. - Vessel name Snow Dragon, hailing port Juneau, Hunter sloop, designed by Cortland Steck, LOA 31' x LWL 28' x Beam 11' x Draft 5' 10" x 5 Tons - Fin keel - Sea anchor: 15-ft. Diameter Para-Tech on 150' x 5/8" nylon double braid with 1/2" stainless steel swivel - Partial trip line - Deployed in a low system in deep water about 150 miles west of Noumea, with winds of 45 knots and seas of 15-20 feet - Vessel's bow yawed 30° - Drift was 8 n.m. (confirmed by GPS) during 5 hours at sea anchor.

Chris Brann was a participant in Compuserve's mammoth drag device and storm tactics debate. The debate has since been "packaged" and placed in the library of the SAILING FORUM. When in Compuserve click on the traffic icon, type GO SAILING and look for a file called Thread on Drogues, Sea Anchors and Storms in the "Seamanship and Safety" library.

Brann cruised Alaskan waters with Snow Dragon, a fin-keeled Hunter 31, before sailing her all the way to Brisbane, Australia. Aside from two incidents of rudder failure, the boat held up fairly well. The failures were caused by the rudder manufacturer's use of smaller shaft dimensions, a defect since corrected by Hunter Marine (owners of older Hunters should make certain that their boats are not affected). The second incident of rudder failure occurred on the Noumea leg of the journey, where Brann had to deploy a sea anchor for damage control and attitude stabilization purposes. Transcript:

0300 November 26, front passed, wind backed to southwest, over 30 knots. 0410 We suddenly lost steering. After mounting the emergency tiller, checking cables and movement of the rudder post we realized we'd lost our rudder again. The seas were over 12 feet and continuing to build. The wind was 40-50 knots. With no rudder we fell into the trough, lying parallel to the waves. 0510 We deployed a 15 foot diameter parachute sea anchor from the bow... to prevent capsizing, and to try and stabilize the vessel while we built an emergency rudder. This held the bow into the waves. By now the wave crests were breaking regularly. The anchor was attached to the bow, via 300 feet of 5/8 inch double braid nylon. This made things a bit more comfortable, and it was easier to drill holes and so forth. Unfortunately, the outer covering [of the double braid] chafed, so I pulled enough rode in to put sound line on the cleats. This resulted in about 150 feet between the sea anchor and the bow. This was not enough line to absorb the energy....

At about 1000 a large wave broke over most of the vessel, filling the cockpit, even though it came from forward. The bow cleats are welded to a 1/4" stainless plate that is in turn bolted through the sides of the vessel. The strain [of the breaking wave] curled this plate through more than 90 degrees, crushed the pipe forming the legs of the cleats, and then broke the 5/8" line (breaking strength 14,400 lbs.) I determined that the line had broken rather than chafed through by observing that the ends of the strands were all about the same length and were slightly fused. The strain also curled the main plate holding the forestay. Loss of this plate would have meant loss of the mast. The structure of the boat was also damaged, opening the joint between the hull and deck on the port side, and we started to take water in through the gap.

1040 I rigged a trysail to try and stabilize the boat a bit, though it didn't really head it into the seas, and we were pretty much parallel to the waves for the rest of the day. We had crests break on the hull several times each hour, fortunately none of them were big enough to capsize us. I hung over the stern and dismounted the paddle from the wind vane (self-steering device) for use in building an emergency rudder, which occupied us for the rest of the day.

About 1600 the wind and seas had moderated, and we hoisted a storm staysail, streaming a 36" Galerider drogue from the stern. This got us moving towards Australia, though our course was still determined by the direction of the wave troughs. At 1900 wind was SSE 20-25 knots.... The next day we rigged the emergency rudder. It broke after a few hours, but we redesigned it and put it back on. We spent the next week improving the rudder and sailing to Australia.... Directional control was eventually established by a combination of jury rudder and a light drag towed behind the boat.... We tied to the customs wharf in Brisbane at 0720 local time on December 4.

Comments: This was a normal low pressure system, with wind and seas that would present no danger to a well-found boat equipped with a rudder. Two other vessels were nearby and in radio contact with us. One was 32' long, and the other 43'. Neither of them suffered any damage from the weather, and in fact both were able to rendezvous with us to provide additional lumber for use in making another emergency rudder in case our first one failed. Our problems were solely a result of the rudder failure.

What we'd do next time: Shackle all 300 feet of nylon line to the [steel] anchor and let out the [steel] anchor and 100-150 feet of chain. This approach was used by some friends on a 42 ft. Lord Nelson with success in the Tasman sea. In our case, while it lasted the sea anchor stabilized the boat quite a bit, especially compared to our gyrations without a rudder. 

S/M-31 Gauntlet, Bermudan Sloop

BERMUDANS/M-31

Gauntlet, Bermudan Sloop

42' x 14 Tons, Full Keel

18-Ft. Dia. Sea Anchor

Force 8 Conditions

File S/M-31, obtained from R. Walton, North Gosforth, UK. - Vessel name Lady Emma Hamilton, hailing port Amble - Gauntlet, Bermudan Sloop, LOA 42' x LWL 33' x Beam 9' 6" x Draft 6' x 14 Tons - Full keel - Sea anchor: 18-ft. Diameter Para-Tech on 400' x 3/4" nylon braid rode with 5/8" stainless steel swivel - Partial trip line - Deployed in a gale in shallow water (45 fathoms) in the North Sea, about 125 miles east of Aberdeen, Scotland, with winds of 40-45 knots and seas of 28 feet - Vessel's bow yawed 20° at the peak of the gale in Force 8, increasing to 45° when the wind moderated to Force 6 - Drift was 7 n.m. upwind during 23 hours at sea anchor.

This file was forwarded to Victor Shane by Mike Seal, proprietor of Cruising Home Ltd. in the United Kingdom, to whom we are indebted.

Lady Emma Hamilton is a double-ended Bermudan Sloop, similar to Bernard Moitessier's Joshua, hailing from the Northumberland harbor of Amble (about 40 miles south of the Scottish border).

In June of '97 her owner, R. Walton, was sailing her back to Amble from Bergen, Norway, when she ran into a gale in the infamous North Sea, about 125 miles offshore, east of Aberdeen, Scotland. Walton describes the sea states as "cycloidal, steep, breaking/unstable" on the form he filled out, which is believable, given that the yacht was in only 45 fathoms of water, and that the northerly wind was blowing contrary to a northwesterly current. The average waves were about 28 feet high at the time, as measured by the crew on a nearby oil rig. Transcript:

Rode led over bow roller and tied to it. Rags were used to wrap around rode at bow fitting to stop chafe. In future I will use a leather "tube." Checked for chafe every two hours - rags wore through, but rode only very slightly scuffed. No bridle used. Once wind moderated the yaw increased, but at the peak of wind boat held almost dead into wind. We hove-to just next to an oil platform, "SANTAFE 135," which relayed a message to our destination advising our delay, etc.

Hove-to at 0600 hrs. Wind moderated by 2300 hrs, but waited till first light to haul in the anchor as this was the first time I had ever used it. Made way at 0500 hrs 28 June in Force 6 still from North. Initially our drift was imperceptible (no noticeable slide or turbulence at all! Just stayed put). But by dawn it was obvious we had drifted upwind past the oil rig, so current was overcoming drift downwind.

Throughout, the tension on the rode seemed very great. Considerable windage from 60 foot mast and [roller] furled genoa. No sail or other windage hoisted at stern. Boat motion was quite extreme, with gunnel to gunnel roll being set up, then dying down again every few minutes.

The Para-Tech sea anchor and Delta Rode were supplied by Cruising Home Ltd. UK as a complete package, with deployment bags for both (rode in Rode Bag) - they worked perfectly. I just undid the straps and the Rode Bag toggles and tossed it overboard - it all sorted itself out and within five minutes we were riding head to wind. I am totally sold on the concept! We had been pooped twice before we hove-to and the seas increased in ferocity somewhat later.

 

 

S/M-30 Venus 46 Ketch

S/M-30

Venus 46 Ketch

46' x 19 Tons, Low Aspect Fin/Skeg

24-Ft. Dia. Sea Anchor

Force 9 Conditions

 

File S/M-30, obtained from F. Bradford Smith, Newton PA. - Vessel name Kindred Spirit III, hailing port Baltimore, Venus Ketch, designed by Bob Salthouse, LOA 46' 6" x LWL 36' 6" x Beam 13' 6" x Draft 5' x 19 Tons - Low aspect fin keel & skeg rudder - Sea anchor: 24-ft. Diameter Para-Tech on 500' x 3/4" nylon double-braid rode with 3/4" stainless steel swivel - No trip line - Deployed in a gale in deep water about 600 miles east of Miami, with winds of 40-50 knots and seas of 20-25 feet - Vessel's bow yawed 10° with the mizzen up - Drift was minimal during 18 hours at sea anchor.

Kindred Spirit III was designed by Kiwi naval architect Bob Salthouse for New Zealand waters. She is a 46-ft. double headsail ketch displacing about 38,000 lbs. In late October 1985 she was being sailed from St. Croix USVI to Baltimore MD when she ran into foul weather. On board were the owner and skipper, age fifty four, himself an experienced sailor with moderate offshore experience, his wife, and a male crew member, age fifty six, an experienced coastal sailor. A 24-ft. diameter Para-Tech sea anchor was deployed on 500' of 3/4" nylon rode. This is the largest sea anchor Para-Tech makes for small craft and requires at least two crew members to deploy and retrieve. F. Bradforth Smith provides a compelling - step by step - account of the logistics that are involved in the deployment and retrieval of a large sea anchor on a large yacht:

Kindred Spirit III was newly purchased by her owners, who had spent the previous two months planning the delivery and preparing themselves and the boat for the trip. The preparations included the purchase of a parachute-type sea anchor system consisting of a 24' diameter Para-Tech model; 600' of 3/4" braided nylon rode made up in two 300' shots so that the rode was of manageable weight, each shot having heavy duty thimbles (one with thimbles at both ends, and one with a thimble at only one end); a 3/4" stainless swivel for connecting the rode to the anchor shackle; and a 7/8" galvanized shackle for connecting the two shots of rode to each another. Additionally, the owners installed heavy duty hawse holes in the forward bulwarks approximately three feet aft of the stem. These were specifically intended as the lead for the sea anchor rode, and were deemed necessary because Kindred Spirit III's bow chocks were open top chocks and were located atop a 6-inch bulwark, resulting in an unfair lead to the bow cleats seated on deck. The presence of twin steel anchor roller and a large deck-mounted winch made a chafe-free lead directly over the bow problematic.

Six days out of St. Croix Kindred Spirit encountered a line squall which destroyed the leach of her 135% roller furling Kevlar tape drive genoa, rendering it useless and unrepairable with the materials and equipment on board. Proceeding under staysail, reefed main and mizzen, Kindred Spirit was faced with backing wind, and in late afternoon of 2 November was motorsailing into building wind and seas under staysail and mizzen only. Although the boat was moving comfortably and under full control, at 2000 the skipper decided to heave-to because the wind continued to be unfavorable, the seas were continuing to build, and he was concerned that the crew not become fatigued.

Hove-to with staysail and unreefed mizzen, Kindred Spirit rode out the night in comfort, and the skipper enjoyed a full night's sleep. At 0600 on 3 November the skipper decided to deploy the sea anchor because both wind and seas had continued to build during the night and, while the vessel continued to ride comfortably hove-to, the failure of the genoa caused the skipper to have concerns that the other heretofore undetected gear weakness could result in damage to the staysail, the mizzen, or the running rigging, any one of which could produce a dangerous situation.

Additionally, the barometer was reading 1020 and above, indicating that what was being experienced was not a passing low pressure front or cell, and thus no reasonable estimation could be made of the current situation's expected duration. (It was later determined that what was experienced was probably a strong local enhancement of the NE trades, occasioned by a deep low pressure trough which had fallen off the US southeast coast the previous day, creating tightly-spaced isobars between it and the high pressure ridge around whose backside Kindred Spirit's route was planned).

The sea anchor, rode and related hardware, all stowed in the V-berth forward, were brought to the center cockpit and assembled. Both the movement of the equipment and its assembly were difficult due both to weight (even at 300', the rodes weighed in with thimbles at almost 70 lbs. each) and to the motion of the boat as it rode 20+ foot waves. This process, which required managing 600' of 3/4" line in the center cockpit in a manner which permitted access to both ends of each of the 300' shots without creating any tangles, was slow, tedious work which took almost two hours to complete. In the skipper's opinion, attempting to accomplish this task hurriedly in an emergency situation is a recipe for disaster, and attempting it on an open foredeck in any kind of severe weather is unwise.

Once fully assembled and checked, including double mousing of the shackles, the bitter end of the rode was led forward outside all rigging and lifelines and was inserted through the hawse hole from the outside in and about 150' of rode was pulled through the hawse hole and made neat and fast on the foredeck. This rather awkward process was required because the heavy duty thimbles on the 3/4" line would not fit through the hawse holes, even though the hawse pipes installed were the largest available from boating catalogues. A six foot length of fire hose was slipped over the rode's bitter end using a boat hook as a needle, and was then run down the rode to the hawse hole, where it was made fast to the bow cleat. This was accomplished by cutting a "V" shaped notch in one edge of the flat fire hose, and then running a short piece of 3/8" line with a stopper knot through the hole and tying the fire hose to a cleat [so it could not migrate]. This was the only trip to the foredeck required during the entire deployment operation. A 20" round fender buoy to serve both as a locator and as a trip line float was attached to the short nylon web tether provided with the sea anchor. No other trip line was used.

The sea anchor was then deployed from the relatively protected amidships weather deck adjacent to the center cockpit with the boat still hove-to. During deployment, the rode was snubbed about every 50' both to encourage the anchor to emerge from the storage/deployment bag and to help assure that the rode was running free. The boat did not respond to the sea anchor until almost all the rode was deployed and some substantial load was on the rode, at which point she came smartly round to windward and lay about 20° off the wind. The staysail was then doused and secured before it could drive the bow further off the wind and broadside to the waves.

The unreefed mizzen, of approx. 195 sq. ft., was left up as a riding sail the entire time at sea anchor, the intent being to get the boat to lie 40+ degrees off the wind in an attitude similar to that achieved when hove-to. While this did stabilize her motion somewhat, the sheeting angle needed to bring the bow down the desired amount was, in the skipper's opinion, such that too great risk of sail damage existed, so closer sheeting resulted in a stable wind angle of about 30 degrees.

Laying relatively quietly to the sea anchor, Kindred Spirit received only spray on her deck for the 18 hours she lay-to, except for one boarding wave which was the second of two very steep and large waves so closely spaced that her bow was unable to rise from the back of the first to ride the face of the second. The sea anchor consistently "pulled" her bow through the face and crests of waves. Although the anchor rode was bar tight, no jerkiness was experienced, and the rode seemed, between stretch and catenary action, to exert a constant pressure on the deck cleat to which it was secured.

The sight of the 20" round red float bobbing happily on the crest of the next wave in the train was a sight reassuring beyond description. On the other hand, the 3/4" rode, so massive in the cockpit, looked every bit like a string, from which it seemed Kindred Spirit was hanging for dear life. On several occasions the skipper was grateful that he had gone up a size from the rode size recommended.

Every two hours or so a foot or two of rode saved on deck for the purpose was released to even out any chafe. No chafe or even black marks from the inside surface of the fire hose was ever noted. Because the load on the rode was very high, the paying out of rode was a testy business. To avoid even the possibility of a runaway rode and possible loss of the sea anchor, an amidships cleat was used as a second securing point, and the rode was secured to this cleat with enough slack to permit both the paying out of the desired foot or two and the reattachment of the rode to the primary bow cleat. While this arrangement was never tested to its fullest, there were small mishaps which proved the value of the double attachment. Serious injury to hands and fingers is a real danger here, and must be taken seriously.

The skipper had intended to utilize a "Pardey bridle" to bring the bow 40-50° off the wind, primarily for comfort. The riding snatch block normally used in this setup was not attached to the rode before the rode was under load due to the risk of mishap during deployment. After deployment, it was discovered that the 6 foot chafing gear extended so far down the rode that it was impossible safely to reach beyond it to attach the snatch block. The load on the rode was so great that the skipper decided to not risk mishap by attempting to bring the rode alongside to permit attachment of the snatch block, and the bridle idea was scrapped. While the boat's motion was not extreme, it was uncomfortable and enervating. The relative comfort of lying hove-to was significantly higher than the motion experienced lying to the sea anchor without the benefit of a twin attachment point scheme. During future deployments a shorter chafing gear rig will be used and the snatch block will be deployed as a high priority.

During the morning of 4 November the wind and sea began to abate, and by noon the sea anchor retrieval process began. The initial retrieval of the rode was relatively straightforward, as Kindred Spirit was slowly motored toward the sea anchor guided by the orange float, which proved invaluable for this purpose. Due to the remaining wind and sea, constant attention was required to assure progress in the direction of the anchor, and prearranged hand signals from the foredeck to the helm were an absolute necessity. As the rode came aboard, the problem of a now wet 600 feet of 3/4" line on the foredeck became serious. As a practical matter, there was nothing to be done during the retrieval process except to assure that the rode was securely on board and not underfoot. As the float came to be retrieved a significant unexpected problem presented itself.

Upon securing the float aboard, attention was given to the retrieval of the sea anchor itself. Buoyed (no pun intended) by the successful sea anchor experience, the foredeck crew failed to anticipate the extreme load still on the nylon web [float line] tether due to the weight of the now deflated but wet 24 foot nylon parachute and to the strong motion of the boat as she bobbed in the sloppy leftover seas. The male crew member got his upper arm tangled in the webbing, and caught between the webbing and the upper lifeline. Before he was able to extract himself the loads badly bruised his upper arm. Had the tether been smaller in diameter, or had the crew member caught a wrist or finger, broken bones would have been distinct possibilities. It is strongly recommended that much greater consumer education emphasis be placed on the loads and resultant potential dangers associated with anchor retrieval. In the skipper's opinion, retrieval is at least as dangerous as deployment and is especially tricky due to the random load cycling resulting from the uneven motion of the boat as the anchor rode and tether become shorter at the late retrieval stage. Visions of plucking a deflated sea anchor from the water while hanging over the bow with a boat hook are not only fantasies for all but the very smallest equipment, but are also downright dangerous because they so grossly misrepresent the actual loads and associated dangers of sea anchor retrieval.

Upon final retrieval, the anchor, rode and miscellaneous hardware was stowed on the large afterdeck. While this exposed the rode to sunlight, no practical alternative was found which did not involve dragging 600 feet of salt water soaked rode through the salon to the forward head. Minimum sea anchor equipage should include a tarp or other device with which the retrieved rode and sea anchor can be securely protected from the sun and still remain on deck. Future enhancements to Kindred Spirit's storm preparations will include two life raft canisters permanently attached to the aft cabin roof, customized with adequate drain holes and thus intended to permit both dry and wet storage of the sea anchor, rode, and miscellaneous hardware. An anticipated benefit of this arrangement is the ability to substantially make up the sea anchor assembly before departure, thus significantly reducing the time required to deploy.

In summary, the parachute type sea anchor performed in a flawless manner during deployment in moderate gale wind and sea conditions. The ride while at sea anchor was uncomfortable but is expected to be substantially enhanced by use of a bridle off the side of the vessel, thus permitting the adjustment of the vessel's attitude to wind and seas. The 24' diameter sea anchor and its 3/4" rode are large, heavy pieces of equipment whose assembly, deployment and retrieval require very detailed planning and a realistic understanding of the conditions on a vessel in circumstances which make such deployment desirable. Finally, the notion that a 24' diameter sea anchor is a practical means of stopping for lunch is just not a realistic expectation. Heave-to for lunch, leave the sea anchor for when conditions make lunch an effort.

This skipper is grateful that his first deployment was in conditions which were relatively forgiving, and I encourage anyone purchasing a sea anchor to fully deploy, lie-to and retrieve it in moderate conditions. The education thus obtained cannot be described. And, don't leave home without one.

S/M-29 Morris Justine Sloop

JUSTINES/M-29

Morris Justine Sloop

36' x 9 Tons, Low Aspect Fin/Skeg

15-Ft. Dia. Sea Anchor

Force 9 Conditions

 

File S/M-29, obtained from Robert K. Gwin, Jr., Orange Park, FL. - Vessel name Osprey, hailing port Jacksonville, Morris Justine sloop, designed by Chuck Paine, LOA 36' x LWL 30' x Beam 12' 6" x Draft 4' 9" x 9 Tons - Low aspect fin keel & skeg rudder -

Sea anchor: 15-ft. Diameter Para-Tech on 300' x 5/8" nylon three strand rode with 5/8" stainless steel swivel - No trip line - Deployed in a whole gale in shallow water (100 fathoms) about 300 miles ESE of Jacksonville, with winds of 45-50 knots and seas of 15-20 feet - Vessel's bow yawed 20°

Like so may other case histories the benefit that Osprey derived from her sea anchor was all too brief. The rode chafed through. Transcript:

We actually did not deploy our sea anchor until the storm had peaked and perhaps began dropping. The storm had been building the previous day and we had hove-to the previous evening under storm staysail and double-reefed main. The boat rode fairly well under this configuration, but there was a lot of movement and about 2:00 AM we took a 80-90° knockdown which carried away our deck-mounted life raft and did some other damage.

We remained below until sunlight and decided to deploy the sea anchor to stabilize the boat. We lowered the stays'l and deployed it as instructed. It filled fairly quickly and appeared to have a quieting effect on the boat's motion. Unfortunately the rode was chafing on the bow roller next to the anchor due to the movement of the boat (¸ 20° yaw + more when the boat was hit by a cross sea). Attempts to re-route the rode resulted in the rode and the sea anchor being lost.

Comments:

1) The primary anchor had not been stowed before going offshore, so the bow roller was not available for use, and the anchor caused chafing.

2) A practice run had not been done.

3) Insufficient chafe gear was available for use. We did notice that there was no jerkiness or surging with the anchor deployed. The tension on the rode was terrific.