Category Archives: Sea Anchors on Monohulls

Monohulls deploying a sea anchor off the bow

S/M-11 Venture 222 Sloop


Venture 222 Sloop

22' x 1 Ton, Centerboard Keel

12-Ft. Dia. Sea Anchor

Force 3-4 Conditions

File S/M-11, obtained from Harley L. Sachs, Houghton MI. - Vessel name Gamesmanship, hailing port Houghton, Venture 222 sloop, designed by Roger MacGregor, LOA 22' x LWL 18' 6" x Beam 7' 4" x Draft 4' 6" x 1 Ton - Centerboard swing-keel - Sea anchor: 12-ft. Diameter Para-Tech on 100' x 3/8" dia. nylon three strand rode, with 5/16" stainless steel swivel - No trip line - Deployed during passage of frontal trough in shallow water (7 fathoms) on Lake Superior with wind gusting to 20 knots - Vessel's bow yawed 10° with the swing-keel down and 45° with the swing-keel fully raised.

Way back in June 1988 Victor Shane sent a letter to the editor of Cruising World Magazine, asking for feedback on sea anchors and drogues. Mr. Harley Sachs read the letter and responded with the following feedback:

For your database: Vessel, MacGregor Venture 222 sailboat, swing keel, transom hung spade rudder, LOA 22 feet, weight about 2,000 lbs. Conventional wisdom (Chapman and the boating supply catalogs) suggested a 30-inch conical drogue sea anchor. This does not work with my boat.

My wife and I decided to test this equipment on a breezy day with four-five foot waves on Lake Superior. I launched the 30-inch cone from the bow on about fifty feet of line and lowered all sail. The boat assumed a position with the seas abeam and would not face into the waves no matter what the rudder position was. With the sea anchor shifted to the stern, the result was the same. The motion of the boat was violent and I could hardly move about on deck.

I hoisted a small riding sail on the back stay. This had an immediate, remarkable damping effect on the boat's motion but did not cure the beam-on attitude of the boat to the seas. The 30-inch conical drogue was pronounced a failure.

Sachs turned out to be a multi-faceted sailor who was, among other things, writing a book on nautical humor (Irma Quarterdeck Reports, Wescott Cove Publishing, 1990). Shane mentioned the similarity between his disappointing experience with the small cone and those documented by Adlard Coles in Heavy Weather Sailing, and then asked if Sachs would consent to trying out a 12-ft. diameter parachute sea anchor. This was to be a "controlled experiment" - same boat, same conditions, but a much larger sea anchor. He agreed, and Shane sent him the sea anchor. Three months later he tried it out in similar conditions and sent back the following report:

Subject: Test of 12-ft. diameter para-anchor. With westerly winds gusting to 20 mph after the passage of a cold front, we motored offshore to a point outside the Lower Entry harbor on Keweenaw Bay of Lake Superior. With the engine shut off we drifted about 1 knot downwind with the wind and waves off the stern quarter, the same attitude I experienced when unsuccessfully testing my 30-inch conical drogue.

About a mile offshore, in about forty feet of water, I set up the 3/8" laid nylon rode to launch the para-anchor.... As instructed, I launched the float first, which functions as a pilot chute, drawing the para-anchor away from the boat as the boat drifts downwind. This could hardly be easier, for the chute slid overboard and in two or three minutes filled beautifully. Once it filled, it stuck in the water almost like a post and the Venture 222 bow came right up into the wind exactly.

With the keel down the Venture did not yaw more than 10°. With the keel retracted, there was 30°-45° of yaw, as the Venture bottom has almost no lateral resistance with the keel retracted. Rudder was tied amid-ships.CB
When retrieving the sea anchor, one cannot pull the anchor to the boat. One pulls the boat to the anchor, and that takes strength. I'm glad it wasn't a three ton vessel! Once I could reach the parachute strings, it was dead easy to spill the water out and haul it aboard. Took no effort at all, pulling one string. Once spilled, the para-anchor is a limp sack.

We did drift slightly with the anchor. In six minutes the bearing on the lighthouse half a mile away had shifted by ten degrees.... In spite of the holding power, the para-anchor is in a fluid, and the force exerted against it will cause it to slip through the water.

Apart from showing the improvement that can be expected with the use of sea anchor that is large enough, this file reveals something important about centerboards and swing keels as well.

It was previously thought that sailboats would yaw less at sea anchor with their centerboards and keels raised. Not so. At least not on this boat. Apart from tripping on the rudder as the boat surges backward, the CLR moves aft as well. With the CE now so far forward the bow will tend to yaw excessively. When the swing keel is again lowered, however, the CLR moves closer to the CE and the wind doesn't have the same lever. Notwithstanding, boards - and swing keels - should NOT be lowered all the way down in storms.

CAUTION: Lowering board/s and keels, or lowering them all the way, may give the yacht something to trip over in life-threatening storms. By and large, and as an important rule of seamanship, boards and keels should be raised in heavy weather. Or at least raised enough so that the yacht can "slip-slide," and not have a large appendage to hang up on and trip over.

S/M-12 Carter 33 Sloop


Carter 33 Sloop

32' 7" x 4.5 Tons, Fin Keel

12-Ft. Dia. Sea Anchor

Force 8-9 Conditions


File S/M-12, obtained from Steven Callahan, Ellsworth, Maine - Vessel name Karpouzi, hailing port Lamoine, sloop, designed by Dick Carter, LOA 32' 7" x LWL 25' x Beam 11' x Draft 5' 6" x 4.5 Tons - Fin keel - Sea anchor: 12-ft. diameter Para-Tech on 250' x 5/8" nylon three strand with 1/2" galvanized swivel - No trip line - Deployed during a gale in deep water north of Bermuda, with winds of 35-45 knots and seas of 8-12 ft. - Vessel's bow yawed 30° off to each side with two opposing sets of waves approaching from dead ahead and dead astern - Drift was estimated to be 3.25 miles during 4 hours at sea anchor.

Steven Callahan is well-known for his best seller, Adrift. The book is a journal of the seventy-six days that he spent drifting in a life raft after his 21-ft. sloop Napoleon Solo hit an unidentified object and sank in the middle of the Atlantic on 4 February 1981. He journeyed to the limits of human despair in those seventy-six days, yet in the end cheated death and emerged a survivor. Adrift (1986, Houghton Mifflin Co.) won the Salon du Libre Maritime award and has been translated into twelve languages.

Callahan has been involved in many areas of the marine industry since 1968. He has logged tens of thousands of blue water miles, including one single-handed and three double-handed Atlantic crossings. A former contributing editor to SAIL and to SAILOR, he wa at the time of this writing associate editor of Cruising World.

Victor Shane delivered a 12-ft. diameter Para-Tech sea anchor to Callahan in 1989, for use and evaluation on board his boat Karpouzi, a fin-keeled Carter 33 sloop. The para-anchor was used a year later, in a Force 8 gale north of Bermuda. Here is a transcript of Callahan's feedback

On 28 May, 1990, Karpouzi and her three merry crew were completing a delightful week of sailing from St. Martin, and approaching Bermuda. We planned to bypass the island and continue directly to Maine. Our weather, however, was deteriorating, and the forecast was for a day or so of rain and winds of 20 knots.

By midnight the barometer began to fall more rapidly - about .05 inches per hour, and we were broad reaching fast under double-reefed main and working jib. We could hear Bermuda Harbor Radio, about 30 miles east of us. Harbor radio was busy with incoming traffic problems and reports of a developing low that no one had paid much attention to. Through the night they logged winds to 42 knots and predicted seas to 25 feet.

As we proceeded north, the wind strengthened and backed slightly so that we ran dead before waves that I estimate to have been 10-15 feet. All was under control. The barometer began to rise by 06:00 on 29 May and the wind lightened slightly for about a half hour, but then the wind came up hard again and continued to back. In a very short time we were hit with heavy head winds and significantly rising seas from dead ahead, while we continued to surf down 10 foot waves from dead astern.

In 50,000 miles of offshore sailing I have often dealt with heavy seas from a variety of directions, but that was the first time that significant waves approached each other from precisely opposite direction. This, of course, set up a dreadful sea state. When crests coincided, the peaks jumped skyward and the wave slopes were very steep. (Note, in the attached DDDB form, wave height, period, and length are very approximate values because they were all extremely variable due to 180° wave collisions - a bit like being in a blender). I estimated wave height by standing on the cabin top - my eye level about 10 feet above water.

Karpouzi's beam is 11 feet, or the average size of the breaking waves, so I declined Neptune's invitation to get rolled by laying broadside to the waves. We could not carry much sail in the wind, and in any case, heaving-to or beating would put the boat too far off of the approaching waves, increasing the danger of being stalled, pushed back, and rolled. The only feasible solution was to put out the sea anchor. We decided to set the sea anchor just as we would a regular anchor.... We keep the anchor in its own locker in the head of the V-berth, with the rode flaked under it. This allows us to run the rode straight aft, out of the cabin, and forward over the anchor roller.... As I dunked the anchor over, we threw the engine in neutral and drifted back. The parachute opened perfectly and within thirty feet it began pulling, allowing us to pay out line and adjust things just right. A few waves towered above me and one slammed over the foredeck just irritatingly above boot level.

We payed out about 250 feet of the rode and adjusted the length every 30 minutes to avoid chafe. This length proved enough; the sea anchor sometimes neared the surface so we could see it and it rode about a wave trough away from us. I chose not to use a tripping line to avoid any possible foul up, but we tied a huge Norfloat ball to the float line, which we could easily see from far away.

The boat did sway from side to side, creating huge side loads on the anchor roller cheeks, so be advised to use either very sturdy chocks or heavy roller. Ours was a heavy duty universal roller that is advertised for boats to 54 feet, but I believe the side loads on a 54 foot boat would have bent the roller in half. As it was, I was a bit worried. To control sway and remove these side loads, next time I will likely set the sea anchor from a regular chock and possibly haul it off to the side with a rolling hitch and secondary rode to lay 20 to 30 degrees from nose onto the waves. Note that the rode jumps up as the bow plunges downward, so whatever chock you use should have a positive lock across the top.

The only real problem we encountered was a very heavy loading on the steering gear. Karpouzi is tiller steered and at first we just tied it off, but as large waves broke on her, she surged aft, stretching the anchor rode until stopped and pulled forward again. The rudder was yanked mightily by the backward motion and the tiller wiggled about like a snake. Our solution was to give the tiller a shock absorber, just as the nylon anchor rode acted as a shock absorber for Karpouzi. We tied half inch shock chord to the tiller, which allowed it to move 20 or 30 degrees without much problem but prevented the rudder from going hard over, where it could shear off its fittings.

After only four hours on the sea anchor, the wind continued to back and lightened, so that finally we were laying broadside to the now calming waves. It was quite uncomfortable and more dangerous than setting sail. With full throttle we were able to easily retrieve the rode as we steamed up to the pickup float, which we noted had enough windage to float to leeward of the anchor most of the time, so we had no worry about tangling the sea anchor lines. It was a simple matter to pick up the float, trip line, and anchor. Within 20 minutes all was stowed away and we were off.

We drifted 3.25 miles in those four hours, which is a bit more than I expected, but currents around Bermuda are very uncertain. Further tests will compare Karpouzi's normal drift rate with her drift with the sea anchor set. I will certainly be more eager to set the sea anchor in marginal conditions in the future.

It is disappointing to note that Karpouzi's bow was yawing 30° off to each side (i.e., through a total arc of 60°). By all tokens the sea anchor was big enough to have done a better job.

Victor Shane suspects that the conflicting waves - approaching from ahead and astern - might have had something to do with this. Certainly the angle of yaw will have a great deal to do with the amount of slack that finds its way into the system as well. Much of this slack can be a result of orbital rotation causing convergence between boat and sea anchor. Essentially the wind pushes the boat away from the sea anchor, keeping the system taut. Orbital convergence, however, can move the boat and sea anchor toward one another, introducing slack into the rode, sometimes by an amount equal to twice the wave height (twenty feet of slack rode in ten foot seas, for example). Callahan reports significant waves approaching each other "from ahead and astern." Here, not only do we have the rotation associated with the waves approaching from ahead, but also, possibly, the rotation associated with waves approaching from astern, as evidenced by the heavy loads on the rudder, mentioned. This combination could have the effect quadrupling the amount of slack - and attendant yaw - when the crests of the secondary waves coincide with the troughs of the approaching waves.


S/M-13 Bristol Channel Cutter


Bristol Channel Cutter

26' x 7 Tons, Full Keel

9-Ft. Dia. BUORD Sea Anchor

Force 8 Conditions


File S/M-13, obtained from Gary Kaye, Sidney B.C. - Vessel name Mintaka II, hailing port Vancouver B.C., designed by Lyle Hess, LOA 37' (with long bowsprit) x LWL 26' x Beam 10' x Draft 5' x 7 Tons - Full keel - Sea anchor: 9-ft. diameter BUORD on 300' x 5/8" nylon three strand rode with 1/2" galvanized swivel - No trip line - Deployed in a whole gale in deep water approx. 140 miles west of Coos Bay (Oregon coast) with wind sustained at 40 knots and seas of 20 ft. - Use of the "Pardey Bridle" arrangement held the bow 50° off the wind. Drift was estimated to be about 50 n.m. during 52 hours at sea anchor.

In August 1987 Mintaka, a Lyle Hess designed Bristol Channel Cutter, was headed for San Francisco from Victoria B.C., when she ran into a whole gale at about latitude 44° N, longitude 127° W, (some 140 nautical miles west of the Oregon Coast). Gary and Sandi Kaye deployed a 9-ft. diameter BUORD parachute, using the Pardey bridling method (see files S/M-3, 4). All told, this traditionally designed, heavily built cruising yacht was hove-to for 52 hours, the wind sustained at 40 knots and seas of 20 feet.

Since there were no written notes, opinions or observations accompanying the DDDB form that Victor Shane received from these intrepid sailors, it was likely a matter of routine seamanship. Victoria, has a rich seafaring history. It is the hailing port of Taleisin, as well as a number of other boats in this database. It is inspiring to find boats like Mintaka following in the Voss/Pardey tradition of safe voyaging under mast and canvas. When one of these boats get into heavy weather the crew members are not wanting for a tactic. They heave-to, ride out the storm, and quietly resume their cruising.

S/M-14 Carol Sloop


Carol Sloop

24' 6" x 2.7 Tons, Full Keel

9-Ft. Dia. BUORD Sea Anchor

Force 6-7 Conditions


File S/M-14, obtained from Walter Keintzel, Monterey, CA. - Vessel name Deanna, hailing port Monterey, "Carol" double-ender designed by Chuck Paine, LOA 24' 6" x LWL 20' x Beam 9' x Draft 3' 6" x 2.7 Tons - Full keel - Sea anchor: 9-ft. diameter BUORD on 300' x 1/2" nylon three strand with 1/2" galvanized swivel - Deployed in deep water off the central coast of California in low system with winds of 30 knots and seas of 10 feet - Vessel's bow yawed up to 80° - Drift was about 7 miles during 11 hours at sea anchor.

Victor Shane had the opportunity to take a close look at Deanna when she was moored in Santa Barbara harbor. This little pocket cruiser has a flush deck, with very low freeboard and a large full keel beneath. When Deanna is lying a-hull she is more or less anchored to the surface of the ocean by virtue of her big keel alone. Her rate of drift is further reduced because of her low freeboard. In general a yacht has to drift, to tug at a sea anchor, to cause it to fully inflate and function properly. In 60-knots of wind the same BUORD would have done a better job on this boat. A much larger parachute, say a 24-ft. diameter military chest reserve, would likely have pulled Deanna's bow up much higher into the wind as well, even in the given 30 knots. Here is a transcript of the feedback obtained from Walter Keintzel:

Location was 55 miles true west of Pt. Sal, measured by the Loran. I don't recall the barometer reading, but it was "normal." Don't recall the wave length & period, because when I deployed the sea anchor at 20:00 hrs. I was very, very exhausted & numb.

We lay at 80° to the nylon rode - almost parallel to the seas. I think this is because my flush-decked boat got lost in the troughs - not enough windage! With a riding sail on the back stay, I think it would work. As it was, it wasn't too bad.

Mainly the anchor kept me in place for a stormy night, and kept my physical condition from deteriorating to the point where I needed to call the Coast Guard. Next day I ran into Morro Bay for rest & repairs.

I'm very grateful for the parachute anchor. It was easy to deploy, but next time I'll certainly use a 300' trip line. Retrieval was like pulling a VW for fifty minutes!

S/M-15 Whitby 42 Ketch


Whitby 42 Ketch

42' x 11.75 Tons, Full Keel & Cutaway Forefoot

12-Ft. Dia. Sea Anchor

Force 8 Conditions


File S/M-15, obtained from Bruce Stewart, Ithaca, NY. - Vessel name Osteoflyte, hailing port Ithaca, Whitby ketch designed by Ted Brewer, LOA 42' x LWL 33' x Beam 13' x Draft 5' x 11.75 Tons - Full keel & cutaway forefoot - Sea anchor: 12-ft. diameter Para-Tech on 300' x 3/4" nylon three strand with 5/8" galvanized swivel - Deployed in deep water 150 miles east of Cape Hatteras in a low system with winds of 35 knots and seas of 20 feet - Vessel's bow yawed 45° - Drift was about 2.5 miles during 20 hours at sea anchor.

Ordinarily the ketch rig places the CE (center of wind effort) a great deal more forward than sloop, cutter, or yawl rigs. Unless a mizzen can be flown most ketches will tend to "hunt" at anchor. Transcript:

We were 150 miles off Cape Hatteras in 20' seas and deteriorating weather, when we fouled our prop reducing sail. We needed a break so I decided to deploy the chute (this was the first time other than a fair weather practice). We sent the unit off the stern [flying set] on a new 3/4" three strand nylon rode and it went out so fast I got a rope burn I'll never forget. The bow swung as expected and the rode went out a smooth bow skene chock with a good fairlead.

We hung on the chute for 20 hours. The conditions were NASTY, but we could still get to the bow and fuss with the rode. We had a terrible problem with chafe. We tried "freshening the nip" and all sorts of commercial and fabricated chafe gear - it either split or migrated very quickly. In those conditions I think we would have lost the chute to chafe failure of the rode. The second problem was the bow "hunted" back and forth, giving us a most unpleasant motion, and may well have contributed to the chafe. Both of these problems make me question - would a bridle that held the bow a little off center help? And how do you deal with chafe when conditions are really bad?

A few comments. Despite my para-anchor being clearly undersized by your current brochure it held us like a brick wall and seems quite large enough. In 20 hours we drifted 2.5 miles by Loran. I didn't have a suitable trip line and was afraid of a tangle, so just used a float. When the wind dropped to 20-25 we decided to "pull in" the chute and get going. It took two of us (both 220 lbs. and in good shape) to pull us up to the para-anchor and 90 minutes of cranking the anchor windless and then tailing to the genoa winches.

S/M-16 Cape George 31 Cutter


Cape George 31 Cutter

31' x 9 Tons, Full Keel

12-Ft. Dia. Sea Anchor

Force 8 Conditions


File S/M-16, obtained from Steve Lockwood, Portland, OR. - Vessel name Halo, hailing port Portland, Cape George cutter designed by Nolan Atkins, LOA 31' x LWL 27' 6" x Beam 9' 6" x Draft 5' x 9 Tons - Full keel - Sea anchor: 12-ft. diameter Para-Tech on 300' x 1/2" nylon 3-strand and 50' of 5/16" chain, with 1/2" stainless steel swivel - Deployed in deep water about 100 miles northwest of San Francisco in a gale with winds of 35-40 knots and seas of 14 feet - Vessel's bow yawed up to 90° at times - Drift was about 6 miles during 20 hours at sea anchor.

In May 1993 Halo was en route to the Bay Area from Portland, normally a downwind run. When she ran into a southerly gale her owner tried beating into it for a while, and then decided to deploy a 12-ft. diameter Para-Tech sea anchor. Halo was sea anchored for 20 hours, drifting only 6 miles. Transcript:

Boat was held off the wind an increasing amount as wind strength increased. Very uncomfortable roll and some waves broke on deck. Our boat is exceptionally strong so we were not very concerned. We forgot to add a swivel, but noticed no difference in boat motion over time. There was some twisting [of the nylon rode], but not severe at all. Rode was 300' x 1/2" nylon with 50' of 5/16" chain at sea anchor. Certainly no survival storm, but we thought it would be interesting to try it out and that a break from beating into the gale would be nice if we didn't lose too much ground.

S/M-17 Crealock 34 Cutter


Crealock 34 Cutter

34' x 6.75 Tons, Low Aspect Fin/Skeg

12-Ft. Dia. Sea Anchor

Force 8-9 Conditions


File S/M-17, obtained from Sandy and Les Bailey, Honolulu, HI. - Vessel name N'ISKU, hailing port Honolulu, Pacific Seacraft cutter designed by Bill Crealock, LOA 34' 1" x LWL 26' 2" x Beam 10' x Draft 4' 11" x 6.75 Tons - Low aspect fin keel and skeg rudder - Sea anchor: 12-ft. diameter Para-Tech on 400' x 1/2" nylon three strand with 50' of chain and 3/8" swivel - Deployed in deep water near 15° 49' N, 159° 48' W, in a gale with winds of 40-45 knots and seas of 16 feet - Vessel's bow yawed 10° - Drift was 15 miles during 14 hours at sea anchor.


N'ISKU was en route to Palmyra Atoll from Honolulu, when she ran into something akin to a Kona storm. A 12-ft. diameter Para-Tech sea anchor was then deployed, which held the bow of the yacht into the seas in a most satisfactory way. Transcript:

This was not a survival situation in the usual sense. On this passage, my wife and I had endured four successive days of 25+ knot easterly trade winds, all from ahead of the beam, with 12 to 14 foot seas from the same direction. The boat handled beautifully and we never felt threatened nor out of control, logging 150 to 160 miles per day. Unfortunately, persistent mal de mer had flattened my wife from the first day and then a streptococcal throat infection laid me low. These tribulations significantly reduced the pleasure of the sail and severely taxed our stamina. Nevertheless, we maintained our watches and did not feel it was unsafe to continue as long as conditions remained the same - which they didn't.

The wind piped up to 40 knots with higher gusts and veered a bit to the south. The seas built and became confused. The motion became most uncomfortable with a yaw component that made it very difficult for a couple of arthritic sexagenarians to get around. We then decided it was time for a little "rest and rehabilitation." We tried heaving-to under sail, but this did not prove satisfactory under those conditions. Over the side went the sea anchor and immediately our habitat became more livable. The major motion of the boat was now an almost gentle pitch, with occasional episodes of roll, but amazingly the uncomfortable yaw motion had vanished.

We used a 12 foot Para-Tech nylon parachute specifically designed as a sea anchor in a deployable storage bag. A large fender (8" x 24") served as the primary float and a smaller dinghy fender (3" x 12") at the end of 100 feet of 1/4" polypropylene was the trip line. Our rode consisted of 200 feet of three strand 1/2" nylon, 50 feet of 5/16" BBB chain and a second 200 feet of 1/2" nylon for a total of 450 feet. Swivels were used to attach the nylon rode to the anchor and to the chain (overkill perhaps). The nylon rode was led through a bow roller to cleats. Sufficient rode was released so that the bright yellow canopy of the sea anchor was visible in the crest of an oncoming swell as we were atop the crest of another wave. Three to four layers of fire hose were used for chafe protection at the roller.

We did not observe surge or shock loads on the rode. The boat always seemed to head into the wind and seas at the same angle (<10°) and did not sail about at anchor. The entire system worked perfectly, probably because of a) the length of the rode, b) the catenary induced by the chain in the middle of the rode, and c) the boat and anchor were in crests and troughs in synchrony. By morning the winds had abated to about 30 knots and backed into the east. The crew, still bruised, but very much refreshed by a night of rest, was eager to head south again.

S/M-18 Crealock 34 Cutter


Crealock 34 Cutter

34' x 6.75 Tons, Low Aspect Fin/Skeg

15-Ft. Dia. Sea Anchor

Force 8-9 Conditions


File S/M-18, obtained from John R.S.Charlton, Oceanside, CA. - Vessel name Fancy Free II, hailing port Oceanside, Pacific Seacraft cutter designed by Bill Crealock, LOA 34' 1" x LWL 26' 2" x Beam 10' x Draft 4' 11" x 6.75 Tons - Low aspect fin keel and skeg rudder - Sea anchor: 15-ft. diameter Para-Tech on 300' x 1" nylon three strand with 1/2" stainless steel swivel - Deployed in deep water about 550 n.miles NE of Hawaii in a whole gale with winds of 40-50 knots and seas of 30 feet - Vessel's bow yawed 10° - Drift was reported to be "minimal" during 12 hours at sea anchor.

Fancy Free II was en route to Kaneohe, Hawaii from Oceanside, California in the month of January. She ran into a south-westerly gale and had to use her 15-ft. diameter Para-Tech sea anchor. Owner's handwritten remark reads thus:

Great product. Unfortunately, my helm was not lashed down securely - steering cable broke at quadrant. (Large wave lifted stern and rudder slammed over to "stops").

Fancy Free II is a sister ship to N'ISKU (see illustration in previous file). Both of these Crealocks behaved very well at sea anchor, yawing less than 10°. Note that N'ISKU used 400' x 1/2" nylon plus 50' of chain, while Fancy Free II used 300' of 1-inch nylon, and yet both boats behaved equally well. In looking for causality one has to put on a Sherlock Holmes hat and try to find some basic virtue in Bill Crealock's design, something that makes these boats yaw so little - probably the closeness of the CLR to the CE - while not losing sight of other variables such as the rode length that determines the relative positions of the boat and sea anchor.

S/M-19 Aloha 30 Sloop


Aloha 30 Sloop

30' x 3.5 Tons, Fin Keel

9-Ft. Dia. Sea Anchor

Force 8-9 Conditions


File S/M-19, obtained from Richard Brooker, Winnipeg, Canada - Vessel name Crocodile Rock, hailing port Winnipeg, Aloha 30 sloop designed by Ron Holland, LOA 30' x LWL 26' x Beam 10' x Draft 6' x 3.5 Tons - Fin keel - Sea anchor: 9-ft. diameter Para-Tech on 400' x 1/2" nylon three strand with 3/8" swivel - Deployed in shallow water (50 fathoms) about 30 miles off the Oregon coast, NW of the mouth of the Columbia River, in a low system with winds of 40-45 knots and seas of 10 feet - Vessel's bow yawed 20° - Drift was 4 n.m. during 18 hours at sea anchor.

No written feedback accompanied the completed DDDB form. In answering the question, "How many degrees did this vessel yaw from side to side?" the owner has checked the "20°" box and written the words "very stable" next to it.

S/M-20 Hinckley 49 Ketch


Hinckley 49 Ketch

49' x 19 Tons, Wide Keel & Centerboard

18-Ft. Dia. Sea Anchor

Force 10+ Conditions


File S/M-20, obtained from delivery skipper Michael Auth, Worton, MD. - Vessel name Pilgrim, hailing port Oxford, Hinckley ketch designed by McCurdy & Rhodes, LOA 49' x LWL 43' x Beam 12' x Draft 5' 6" (9' with CB down) x 19 Tons - Wide keel & auxiliary centerboard - Sea anchor: 18-ft. diameter Para-Tech on 300' x 3/4" nylon three strand with 5/8" stainless steel swivel - Deployed in deep water about 95 miles east of Cape Hatteras (in Gulf Stream) in hurricane Gordon with winds of 50-60 knots and seas of 35 feet - Vessel's bow yawed 10°.


Pilgrim was caught in the web of hurricane Gordon in November 1994. With options exhausted, an 18-ft. diameter Para-Tech sea anchor was deployed - on the fly! It pulled the bow of the yacht right up into the seas (only 10° of yaw) and kept it there for fifteen minutes. However the sea anchor rig was lost shortly thereafter. With conditions worsening Pilgrim had to be abandoned, the crew being taken off by the Coast Guard. Transcript:

Possibly you have read or seen national news coverage including video footage of a dramatic Coast Guard helicopter sea rescue off the Virginia coast this past fall. Actually there were two sailing vessels that got caught in hurricane Gordon and fortunately all the crew from both vessels were successfully rescued by the Coast Guard. I was skipper on the vessel Pilgrim, a 1974, 49' Hinckley ketch sailing from St. Georges, Bermuda to Chesapeake Bay. The boat was in above average condition and had recently undergone extensive upgrading. I have accumulated approximately 70,000 sea miles delivering both power and sail vessels and as customary went through my usual pre-delivery checklist which included inspecting emergency gear.

Pilgrim was equipped with a new 18' PARA-TECH sea anchor and all crew familiarized themselves with proper deployment procedures although we never really though we would have to use this gear. Typical! I thought I had a good "weather window" to make the 600 mile crossing. I not only had the Bermuda weather service's latest information, but had also retained the services of a private meteorologist - Bob Rice's Weather Window, Inc. All weather forecasts indicated Tropical Storm Gordon would track into the Gulf of Mexico and most probably weaken and pose no threat to us.

We departed Bermuda on Nov.14 and made good progress towards the Chesapeake. On Thursday Nov. 17, only 110 nm from the Bay but still in the Gulf Stream, we got hit by what was once a Tropical Storm, now declared Hurricane Gordon! Pilgrim experienced serious problems and equipment failures in Force-10 conditions, which ultimately resulted in our decision to place a Mayday call and activate our EPIRB. Just prior to this we had deployed our PARA-TECH sea anchor. This was not an easy task as we were running downwind in 30-40' heavy breaking confused seas with sustained winds of 50 kts and greater. We managed to secure the tether of the sea anchor to our bow anchor, connected to chain and nylon rode. Once the sea anchor was thrown overboard, rode went out of the chain locker in a wild, uncontrolled, extremely fast and dangerous manner.

The 18' diameter sea anchor worked excellent holding the bow of Pilgrim into the wind and seas and allowing the crew to attempt emergency repairs under much more controlled conditions. We felt fortunate to have the PARA-TECH sea anchor and believed this would give us the opportunity to control the boat which we didn't have previously. However, about fifteen minutes after we deployed the sea anchor we noticed that the rode connecting it to Pilgrim was gone! Somehow, we'll never know exactly, the entire rode was gone from the chain locker! Conditions were so bad below we couldn't examine the chain locker to determine the cause of the problem but might speculate that: 1) The force acting on the rode, including the shock loads, (which were great) might have been too great and pulled the bitter end free. 2) Possibly the bitter end, however it was secured, had parted in some manner. 3) Possibly as some owners will do, tie a large knot in the bitter end so it won't pass through the deck opening, this could have pulled through the deck opening. 4) Also, some owners will secure a piece of wood at the bitter end to prevent the rode from running free. If this was the case, it could have broken and allowed the rode to run out. 5) Another theory, if the rode had been secured to an eye bolt or other securing device, it could have broken or pulled out too. Bottom line is that we did in fact loose our sea anchor which was doing it's job of helping to control the vessel. Consequently when we lost this gear we lost control and eventually had to abandon Pilgrim!

Some suggestions I might offer to possibly avoid this type of situation would be: 1) Place a WARNING notice in an obvious location telling the user to check that the bitter end of the anchor rode is securely attached to a permanent strong piece of equipment that can take a strong shock load or force.... 2) Possibly design a better or easier way of connecting the sea anchor tether to the anchor and/or anchor chain.... The crew on Pilgrim had a most difficult time trying to secure the sea anchor tether under extreme conditions (the usual conditions when you need to deploy this gear). Maybe a heavy duty snap shackle would work? When you're on the bow and it is rising and falling 30 feet or more, it is a most dangerous and difficult task to say the least!